
Metropolis Virtual Point Light Rendering

Sebastien Speierer
Semester project, EPFL, RGL

(a) Path tracer rendering, 256 samples, 270 seconds (b) VPL Rendering 5000 vpls, 10 seconds (c) VPLs distribution

Figure 1: The Virtual Point Light technique is a fast rendering methods with results close to the one computed with conventional path tracers.

Abstract

Solving the rendering equation is a well known problem in com-
puter graphics and there exists plenty of methods to compute
physically-based images. However, most of these methods aren’t
fast enough to allow the user to interact with the scene in real-time.

Virtual Point Lights (VPL) efficiently approximate the global il-
lumation of a given scene and eventually converge to a correct solu-
tion. The method proposed in this report combines the rasterization
power of modern GPUs and the robustness of Metropolis sampling
algorithms to achieve global illumination. In contrast to similar
approaches, we propose a fast and scalable system able to render
complex scenes and materials such as Microfacet models [Walter
et al. 2007].

A second purpose of this project was to implement a state-of-the-art
VPL rendering system that would be later ported to the well-know
Mitsuba renderer as a preview tool.

Keywords: virtual point light, global illumination, physically-
based rendering

1 Introduction

[Keller 1997] proposed a technique for instant rendering called In-
stant Radiosity which, based on quasi-random walk, generates a
set of virtual point light sources to describe the incoming radiance
field and use it to illuminate the scene. His goal was to exploit
graphics hardware to solve the global illumination problem. Sev-
eral researchers developed extensions of this. [Hašan et al. 2009]
introduced a new light type called VSL increasing performance on
scenes with glossy materials and complex illumination. A robust
importance sampling method has been presented in [Georgiev and
Slusallek 2010]. [Segovia et al. 2006] built a bidirectional estima-
tor to generate VPLs in a more efficient manner. Later, they went
a step futher, incorporating a Metropolis-Hasting sampler in their
method to increase its robustness and performance [Segovia et al.
2007].

Our implementation includes many of these ideas with a specific
focus on the Metropolis sampling algorithm. Based on the VPL

renderer implemented in Mitsbuba v0.5, we attempt to push it a
step forward in terms of flexibility and performance.

The remainder of this paper is organized as follow. Section 2 in-
troduces the basic of the VPL technique and how it uses the GPU.
We also give a quick overview of the light transport equation and its
implication in our algorithm. In section 4, we describe in details the
implementation of our methods and the different issues encounter
during the development phase. The mechanisms of the Metropolis-
Hasting sampler are explained in section 3. This section also shows
results and compares the two samplers in different scene configura-
tions. Other results are presented in section 5 and a conclusion is
finally given in section 6.

2 Virtual Point Light method

Like a path tracer, the VPL technique tries to solve the Light Trans-
port problem. In order to increase performance and later allow real-
time user interaction with the scene, the use of the GPU is a key
point of this method. In this section, we will to describe the dif-
ferences between a conventional path tracer and A VPL renderer to
better understand the functionning of this method.

2.1 The Light Transport Equation

The rendering equation first proposed by [Kajiya 1986] exists in a
range of different formulations. Here is a simple recursive formu-
lation that will help us understand our method:

L(x′ → x′′) = Le(x′, x′′) +

∫
M2

L(x→ x′)G(x, x′)f(x, x′, x′′)dA(x)

(1)

where

• L(x′ → x′′): incoming radiance at x′′ from x′

• Le(x′, x′′): emitted radiance at x′ in the direction of x′′

• f(x, x′, x′′): BRDF at x′

• M2: scene surface

• G(x, x′): geometric term between x and x′

In words, we could translate this formula as: The incoming radi-
ance getting to x′′ from x′ is the sum of the emitted light at this
point and the accumulation of the incoming radiance from every
piece of surface in the scene to x′, weighted by the material prop-
erties and a geometric term.

By recursion, this equation handles all possible length of light paths
in the scene, going from the light sources to the eye.

In the scene, a path is described as a sequence of points. Let P be
the space of all possible paths with their origin on the surface of
one of the light source in the scene. We define x̄ ∈ P a path with
xi its ith points and xk its final point. We also define Px a subset
of P such as

P x = {x̄ : x̄ ∈ P and xk = x}

and Pn a subset of P with only paths of length n.

Using this notation, we can reformulate equation 1:

L(x′ → x′′) = Le(x′, x′′)

+

∞∑
k=1

∫
M2

G(x, x′)f(x, x′, x′′)

∫
Px
k

f(xk−1, x, x
′)L(x̄)dx̄dA(x)

(2)

With L(x̄) the light carried along the path x̄. Based on equation 1
we can define the integration over the path space as∫

Px
k

f(xk−1, x, x
′)L(x̄)dx̄

=

∫
M2

...

∫
M2︸ ︷︷ ︸

k−1 times

f(xk−1, x, x
′)S(x1, ..., xk)dA(x1)...dA(xk−1)

with

S(x1, ..., xk) = Le(x1, x2)

k−1∏
i=1

G(xi, xi+1)

k−2∏
j=1

f(xj , xj+1, xj+2)

(3)

Considering a point x′′ in the scene and equation 1, we differentiate

Figure 2: Illustration of equation 3

two types of incoming radiance. The first term in equation 1 is
called the direct illumination while the second term is called the
indirect illumination as illustrated on Figure 3.

L(x′ → x′′) = Le(x′, x′′) + Li(x
′, x′′) (4)

Figure 3: Complete light path from a light source to the screen

2.2 Using the GPU

As said before, we will use the to computational power of today’s
GPUs and the flexibility of the OpenGL 4.0 framework to increase
perfomance in solving the Light Transport equation. In fact, GPUs
are really good at rendering direct lighting for a given scene. More
precisely, it is possible to get a very accurate computation of the
direct lighting from a point light in the scene, and this is where
VPLs come into play.

The main idea behind the VPL technique is to use a conventional
path tracer to compute indirect lighting reaching a point x′ in the
scene and convert it into a virtual point light source. It will then
use the GPU to compute the corresponding indirect lighting term of
L(x′ → x′′) for each point x′′ in the scene seen from the camera.

What’s interesting here is that the GPU will compute the indirect
lighting contribution for every pixel at the same time thanks to its
highly parallel nature.

In order to compute the indirect lighting term in equation 4, we use
a Monte Carlo approach to discretize this formula.

Li(x
′, x′′)

≈
∞∑

k=1

∫
M2

G(x, x′)f(x, x′, x′′)f(xk−1, x, x
′)

(
1

N

N∑
i=1

L(x̄i,k)

p(x̄i,k)

)
dA(x)

≈ 1

N

1

M

∞∑
k=1

N∑
i=1

M∑
j=1

G(xj , x
′)f(xj , x

′, x′′)f(xk−1, xj , x
′)
L(x̄i,k)

p(x̄i,k)

1

p(xj)︸ ︷︷ ︸
path tracer

with p(x̄i,k) and p(xj) the probability of sampling a path and a
point respectively.

This method generates one path at a time and accumulates its ra-
diance contribution to the scene to progressively converge to the
correct solution. The path and its carried energy is computed us-
ing a path tracer. For a given path x̄i, we create a VPL that will
contribute to the point x′′ as follow:

δLi(x
′, x′′) = G(xk, x

′)f(xk, x
′, x′′)f(xk−1, xk, x

′)
L(x̄i,k)

p(x̄i,k)p(xk)︸ ︷︷ ︸
path tracer

(5)

By computing many VPLs, it will eventually converge to the right
solution for indirect illumination.

In equation 5, the path tracer takes care of the computation of
L(x̄i,k)

p(x̄i,k)p(xk)
. The computation of the three other terms will be done

on the GPU as described in sections 4.2 and 4.3.

(a) VPLs distribution in the scene with normal sampling (b) VPLs distribution in the scene with MLT sampling

(c) Scene configuration
(d) Result with normal sampling and 3000 VPLs (e) Result with MLT sampling and 3000 VPLs

Figure 4: Comparison of the Metropolis Light Transport VPL sampling method and the normal VPL sampling method

3 Metropolis-Hastings algorithm

The Monte Carlo sampler is good at sampling VPLs in simple
scenes. However, it is inefficient in quickly finding the relevant
light transport paths in more complex scenes. As described in the
example in Figure 4c, the only light paths that will have a contribu-
tion to the final rendered image have to go through the hole in the
wall. Unfortunately, a conventional Monte Carlo sampler will lose
most of its time sampling VPLs in the second room (where the light
source is) as you can see on Figure 4a. Only a few VPLs will make
their way to the other side of the wall which results in a really dark
image as shows Figure 4d. This is due to the fact that the VPLs
sampled in the second room don’t illuminate the part of the scene
view from the camera.

[Veach and Guibas 1997] proposed a extention of the Monte Carlo
method inspired by the Metropolis sampling algorithms in compu-
tational physics. These algorithms are generally used to approx-
imate distributions with high dimentions, which suits well with
our requirement since the light path space has several dimensions
per bounces. The Metropolis-Hastings algorithm, also sometimes
called Markov Chain Monte Carlo algorithm, samples statistically
correlated paths. Each new sampled path x̄′ with this method re-
sults from the mutation of the last accepted sampled path x̄(i−1).
Then, with probability α, the newly sampled path is accepted or
rejected:

x̄(i) =

{
x̄′ with probability α
x̄(i−1) otherwise

The acceptance probability depends on the contribution this VPL
will bring to the scene and is computed in the following way:

α =
I(x̄′)

I(x̄(i−1))

where I(x̄′) and I(x̄(i−1)) the overall light contribution in the
scene of the current sample and previous sample respectively.

I(x̄) =

∫
Ω

L(x̄k → x)dA(x)

with Ω the set of points in sight from the camera.

In our implementation, we defined two type of mutations:

1. Large mutations: The purpose of these mutations is to explore
the scene. It constists in redrawing a fully random path from
the light transport path space. The new sampled path is inde-
pendent from the previous sampled one. The probability of
choosing this mutation is defined by the constant β. Notice
that if β = 1, then our MLT samplers is exactly the same as a
basic Monte Carlo sampler.

2. Small mutations: The purpose of these mutations is to exploit
good path previously found and perform local exploration.
Based on the fact that nearby paths will make similar con-
tributions to the image, the use of small mutations is really
beneficial for difficult scene such as 4c.

The expected values technique enhance the Metropolis algorithm
by accumulating both the current sample and the previous sam-
ples samples regardless of whether it has been accepted or not.
It weights them according to the acceptance probabily in order to
keep the algorithm unbaised. The previous sample has a weight of
(1 − α) and the current sample has a weight of α. By also accu-
mulating VPLs that have a low contribution to the final image, this
techniques makes the algorithm slightly converge faster.

4 Implementation

This interactive renderer is meant to be used as an real-time preview
tool for the well-known offline Mitsuba renderer. Fortunately, the
two renderers share a lot of functionalities so we could use the ones
already implemented to speedup our development.

4.1 VPL generation

Figure 5 describes the overall pipeline for the VPL algorithm. The
first step includes the computation of the indirect illumination along
a path in the scene and the creation of a VPL at the end of this path.
Mitsuba implements a very efficient path tracer, suitable for these
computations.

Figure 5: Overall VPL computation pipeline

Notice that we use a Monte Carlo approach and sample a VPL
at each bounce points along the path. One of these VPLs will be
picked randomly. In order to get an unbiased sample, we need to
divide the power of this VPL by the probability of sampling this
VPL in this set.

For accumulating the light contribution of this VPL, we first need
to compute the two remaining terms of eq. 5.

4.2 Shadow maps and geometric term

The G(..) term describes the geometric relationship between the
two surfaces, such as visibility and orientation. It can be define as

G(x′, x′′) = V (x′, x′′)
cos(θ′′) cos(θ′)

||x′′ − x′||2 (6)

where θ′′ and θ′ are the angle of the incident light and the normal of
the surface at x′′ and x′ respectively. V (x′ → x′′) is the visibility
term which can be defined as

V (x′, x′′) =

{
1 if x′ and x′′ are mutually visible
0 otherwise

In other words, visibility also means shadows. On a GPU, shadows
can be computed using a shadow mapping. The idea here is to
first render the scene from the point of view of the VPL in order to
compute a depth image. We then use this depth image (also called
shadow map) to test if a pixel is visible from this light source. Since
VPLs are actual point light sources, we need to compute a 360◦

depth image for its shadows. It is done by computing the shadow
map on what’s called a cube map as decribed in [Gerasimov].

Then, the cosine terms can be easily computed since the GPU is
well aware of the surface normals and the incident light directions.

Clamping the distance

In equation 6, we notice that the geometric term is inversely pro-
portional the square of the distance between the two surfaces. A
consequence of this observation is that a surface near a VPL will
become really bright since its distance to the VPL is close to zero.

L ∝ 1

d2
⇒ lim

d→0
L =∞

A simple trick here is to clamp d to a minimum distance to avoid
these singularities. However, by doing this, our final renderer image
won’t converge to the correct result anymore. We will lose energy
at the corners but it is a worth trade off since it greatly increases the
convergence rate of our algorithm.

Figure 6: Clamping prevents singularities at the corners like we
see on this image

4.3 Shader chain

The real world is composed of a vast range of different materials
and combination of them. In computer graphics, these are fully
described by BSDF (or BSSRDF) functions. In order to approach
realistic images, our renderer needs to be able to handle all kind
of materials and to combine them. A shader chain code generation
system tries to solve this problem giving a flexible framework for
BSDF implementation. Each shader has a list of other shaders on
which it depends called dependencies. At the initialization step of
our system, we generate the code of these shaders, traversing the
dependencies tree of the different materials occuring in the scene
and recursively binding their code together.

As an example, we could quickly combine a simple shader such as a
diffuse material with a texture shader and a bumb mapping shaders.

This corresponds to the f(xj , x
′, x′′) coefficient in equation 5

which describes the way in which the light scattered by the surface
at the VPL position.

This system allows the user to quickly have a preview of his scene
even with high specular object such as the specular sphere on Figure
7 or textures like on Figure 6.

Figure 7: Example of a high specular material. We can see the
reflection of the walls and the second sphere on the specular sphere

4.4 Metropolis implementation

The PBRT renderer is the practical implementation of the renderer
described in [Pharr and Humphreys 2004]. In the third edition,
the authors added a chapter specifically about Metropolis sampling
techniques in rendering. Thanks to the similarities in our codes, the
implementation of their Metropolis sampler suited well with ours
system.

The key idea behind their sampler is to represent a path as a vec-
tor X of N real numbers xn between one and zero. Given this
X, the trace function of the path tracer is deterministic as it uses
these numbers to sample position and directions in the process. For
instance, x0 and x1 will define the position of the sampled pixel.

Consequently, since X totally defines a path in the light space, mu-
tations can be applied on the elements xin to generate a new path.

1. Large mutations: The large mutations have the form:

x′n = N (0, 1)

2. Small mutations: The small mutations have the form

x′n = N (xin, σ
2)

where σ defines the width of these small mutations.

If X′ is accepted, we override the values of Xi with the ones of X′.

In [Veach and Guibas 1997], other more specific types of mutations
are presented and each of them handle a different lighting problem
efficiently such as caustic. Further work could focus on implement-
ing other types of mutations and solve other complex lighting chal-
lenges.

5 Results

Figure 8 presents different results obtained with our implementa-
tion. Even when the scene contains heavy shapes such as the ar-
madillo (made of more than 200000 triangles), our renderer quickly
provides good approximations of the overall global illumination in
the scene. Comparing the computation times of Figure 8b and Fig-
ure 8c, we see that our method can provide more than one order of
magnitude in performance gain and still yield similar results. Fig-
ure 8d, 8e, 8f present other results where the scene contains multi-
ple light sources.

6 Conclusion

We presented in this report our new state-of-the-art implementa-
tion for Virtual Point Light rendering. This extention of the Instant
Radiosity algorithm uses modern GPUs power to efficient render
global illumination in a physically-based fashion. On top of that,
thanks to the use of a Metropolis sampler, our system can handle
very difficult visibility scene configuration with almost no perfor-
mance penalty.

Acknowledgements

To Prof. Wenzel Jakob, for his time and help on this project.

References

GEORGIEV, I., AND SLUSALLEK, P. 2010. Simple and robust it-
erative importance sampling of virtual point lights. Proceedings
of Eurographics (short papers) 4.

GERASIMOV, P. S. Omnidirectional shadow mapping. http://
http.developer.nvidia.com/GPUGems/gpugems ch12.html. Ac-
cessed: 2016-05-28.

HAŠAN, M., KŘIVÁNEK, J., WALTER, B., AND BALA, K.
2009. Virtual spherical lights for many-light rendering of glossy
scenes. In ACM Transactions on Graphics (TOG), vol. 28, ACM,
143.

KAJIYA, J. T. 1986. The rendering equation. In ACM Siggraph
Computer Graphics, vol. 20, ACM, 143–150.

KELLER, A. 1997. Instant radiosity. In Proceedings of the 24th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., 49–56.

PHARR, M., AND HUMPHREYS, GREG, W. J. 2004. Physically
based rendering: From theory to implementation. Morgan Kauf-
mann.

RADAX, I., 2008. Instant radiosity for real-time global illumina-
tion.

SEGOVIA, B., IEHL, J. C., MITANCHEY, R., AND PÉROCHE, B.
2006. Bidirectional instant radiosity. In Rendering Techniques,
389–397.

SEGOVIA, B., IEHL, J. C., AND PÉROCHE, B. 2007. Metropolis
instant radiosity. In Computer Graphics Forum, vol. 26, Wiley
Online Library, 425–434.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light trans-
port. In Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., 65–76.

WALTER, B., MARSCHNER, S. R., LI, H., AND TORRANCE,
K. E. 2007. Microfacet models for refraction through rough
surfaces. In Proceedings of the 18th Eurographics conference
on Rendering Techniques, Eurographics Association, 195–206.

http://http.developer.nvidia.com/GPUGems/gpugems_ch12.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch12.html

(a) 0.5 sec. , 155 VPLs (b) 10 secs, 880 VPLs (c) 410 secs, 128 samples using the path tracer

(d) 0.5 sec. , 115 VPLs (e) 15 secs, 300 VPLs (f) 90 secs, 32 samples using the path tracer

Figure 8: Results with the monster scenes containing more than 280000 triangles

