
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

MASTER’S THESIS

Spatially-varying specular microstructures
and reflectance filtering in a production

renderer

Author:
Sebastien SPEIERER

Supervisor:
Wenzel JAKOB (EPFL)

Andrea WEIDLICH (Weta Digital)

A thesis submitted in fulfillment of the requirements
for the degree of Master’s Degree

in the

Realistic Graphics Lab
School of Computer and Communication Science

in collaboration with

Weta Digital

August 6, 2018

Chemin des Colombettes 1, 1740 Neyruz, Switzerland

http://www.epfl.ch
https://rgl.epfl.ch/
https://ic.epfl.ch/en
https://www.wetafx.co.nz

iii

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Abstract
Communication Systems

School of Computer and Communication Science

Master’s Degree

Spatially-varying specular microstructures and reflectance filtering in a
production renderer

by Sebastien SPEIERER

Many surfaces of interest to computer-generated visual effects include spatially-
varying specular microstructures or glittery effects. Such surfaces include rocks,
snow, skin, as well as a wide range of manufactured materials. As a result, find-
ing an appearance model capturing those behaviours is of particular interest to the
visual effects industry. To be successful, this model needs to be computationally effi-
cient, consistent across scales, and expressive (i.e., allow enough control to an artist
in order to achieve a desired appearance). Existing models currently only satisfy
two out of those three goals. Yan et al., 2016 achieves perfect consistency and ex-
pressiveness via the use of high-resolution textures, but at a computational cost that
is prohibitive to visual effects production. Atanasov and Koylazov, 2016 presents
a procedural technique that is computationally efficient while remaining consistent
at all scales. However, it is limited to non-spatially-varying inputs, which signifi-
cantly reduces its expressiveness and thus its usefulness in a production context. As
a result, the main tools currently used in visual effects are general-purpose appear-
ance models combined with texture filtering techniques such as Dupuy et al., 2013.
These allow efficiency and expressiveness but result in a loss of consistency across
scales when the surface normals exhibit anything other than smooth Gaussian statis-
tics. This discrepancy is particularly evident with glittery surfaces, which are neither
smooth nor Gaussian. Using a similar scheme, Tan et al., 2005 leverages the expres-
siveness of Gaussian Mixture Models to reduce the loss of consistency across scales,
while introducing higher storage and filtering cost. The goal of this project is to in-
vestigate appearance and filtering models that would satisfy all three constraints of
efficiency, consistency and expressiveness in a production renderer.

HTTP://WWW.EPFL.CH
https://ic.epfl.ch/communication-systems
https://ic.epfl.ch/en

v

Contents

Abstract iii

1 Introduction to appearance modeling and texture filtering 1
1.1 Appearance modeling . 1
1.2 Texture filtering . 3
1.3 Previous work . 6
1.4 Solutions for a production renderer . 7

2 Autoencoder for Reflectance Filtering 11
2.1 Overview . 11
2.2 Training set . 11

2.2.1 Normal map classification . 12
2.2.2 NDF histogram representation 13
2.2.3 Data engineering . 14

2.3 Network architecture . 15
2.3.1 Autoencoders . 15
2.3.2 Loss function . 16

MSE and Chi-square . 16
Wasserstein distance . 16

2.3.3 Training procedure and architecture 17
Encoder architecture . 17
Decoder architecture . 18
Texture filtering in latent space 19

2.4 Results . 20

3 Procedural Microflakes Models 25
3.1 Introduction to multiscale BRDF . 25
3.2 Implementation . 26

3.2.1 Stochastic hierarchy . 26
3.2.2 Evaluation and sampling procedure 26
3.2.3 Flakes control . 27

3.3 Results . 28

4 Texture-based reflectance filtering with Gaussian Mixture Models 29
4.1 Method overview . 29
4.2 Gaussian Mixture Models . 30
4.3 Expectation-Maximization algorithm . 30
4.4 EM algorithm for Gaussian Mixture Models (GMM-EM) 32
4.5 Computing a mipmap of Gaussian Mixture Models 33

Slope domain parameterization 33
4.6 GMM simplification . 34

4.6.1 Gaussian Mixture Model distance metrics 34
Kullback-Liebler divergence . 34

vi

Optimal transport for Gaussian Mixture Models 35
4.6.2 Simplification scheme . 35

4.7 Reflectance filtering with Gaussian Mixture Models 37
4.7.1 Filtering and interpolation of Gaussian elements 38
4.7.2 Reflectance filtering operators on GMMs 39

Bilinear Gaussian Mixture Model Blending 42
Comparison of the different blending strategies 45
Blending with other filtering methods 46

4.8 Implementation in a production renderer 47
4.9 Results and comparisons . 48
4.10 Future work . 50

5 Conclusion 51

A Bilinear blending strategies figures 53

B Results of the GMM reflectance filtering method 59

Bibliography 65

1

Chapter 1

Introduction to appearance
modeling and texture filtering

1.1 Appearance modeling

As a major topic of computer graphics, rendering is the process of computing photo
realistic images from a description of a 3D scene. Rendering finds applications in
the movie creation, computer games, simulation, architecture, and many others. We
often distinguish between real-time and offline rendering. Real-time rendering fo-
cuses on performance to achieve interactivity, trading realism and scene complexity
for efficiency. This type of rendering mainly rely on the use of dedicated hardware
like Graphics Processing Units (GPUs) and mostly uses a rendering algorithm called
rasterization. On the other hand, offline rendering is a slow and computationally in-
tensive process, and is typically used in the movie industry. With offline rendering,
there is no limitation to the level of detail, complexity of the 3D models and scale
of the scenes we can render. Visual effects companies leverage the computationally
power of large clusters, often called render farms, to execute the rendering tasks on
many cores in parallel. However, even with state of the art hardware and vast re-
sources, render times can vary from a few minutes to hours and sometimes even
days. To give a order of magnitude, the movie "Life of Pi", Academy Award winner
for Best Visual Effects in 2012, containing many complex computer generated char-
acters with fur and high level of detail, used around 1500 years of processor time.
Considering parallelizing this process on a thousand cores, it would still take over a
year to render.

In the more recent years, researchers in computer graphics worked on including
physical correctness into the rendering process, which yields a new era in the field
called physically-based rendering. One solution to this problem is to simulate how
light flows in the real world. Emitted by light sources like the sun or a table lamp,
light travels through space. After interacting with objects like a concrete wall or the
skin of a character, the light rays loose energy and bounce further. A fraction of the
light emitted will eventually reach the observer, which could be a camera or a human
eyes for instance. An algorithm called path tracing stochastically constructs light
paths through the scene trying to connect the sensor to the different light sources,
hitting different objects in the scene.

Mathematical models can describe every step of this process, from the light emis-
sion, the light interaction with surfaces, to the light accumulation on a sensor going
through complex lenses. Those models can then be combined into a single equation,
the rendering equation. This equation exists under many forms but here is its most
common formulation:

2 Chapter 1. Introduction to appearance modeling and texture filtering

Lo(p, wo) = Le(p, wo) +
∫

Ω
f (p, wo, wi)Ld(p, wi)| cos(wi)|dwi

with

• Lo(p, wo) the exiting radiance at p in the direction wo

• Le(p, wo) the light emitted at the location p in the direction wo

• f (p, wo, wi) the fraction of light scattered at p with a incoming direction wi
and outgoing direction wo

• Ld(p, wi) the light hitting p coming from direction wi

Intuitively, it enforces the exiting radiance at p to be equal to the emitted radiance
at p plus the fraction of incident radiance scattered by the surface.

In the context of this work, we will focus on the material response which is repre-
sented by the f (p, wo, wi) term in the rendering equation. This is the Bidirectional
Scattering Distribution Function (BSDF) and it describes how light scatters from
a surface. One of the simplest BSDF model is the perfectly specular, mirror-like
BSDF. A mirror surface reflects light only when the surface normal np (macro nor-
mal) is equal to the half vector bisecting the angle between the incoming light and
the viewer. Given the incoming light direction wi and the viewer direction wo, we
can compute the half vector h in the following way:

h =
wo + wi

||wo + wi||
Therefore, the mirror-like BSDF model can be written as

f (p, wo, wi) = δ(np − h)

On the other hand, a diffuse surface (also called Lambertian) scatters light in all
directions. The amount light scattered in a specific direction is directly proportional
to the cosine of the angle between the direction of incident light and the surface
macro normal, as it obeys the Lambert’s cosine law. Here is the BSDF equation of the
Lambertian model:

f (p, wo, wi) = cos(np ·wi)

Microfacet theory

In reality, diffuse and mirror-like surface models are far from enough to describe
the whole spectrum of materials that compose our the real world. Microfacet theory
was introduced by Torrance and Sparrow, 1967 as a physically plausible model of
specular reflectance of different materials and will be used in Computer Graphics to
represent more sophisticated materials. Walter et al., 2007 introduced a BSDF model
for rough surfaces, handling reflection and refraction together, with the following
equation:

f (p, wo, wi) =
F(wo, wi)G(wo, wi)D(h)

4(np ·wo)(np ·wi)
(1.1)

where F denotes the Fresnel reflection coefficient, D the microfacet distribution, and
G the shadow-masking term. Microfacet theory assumes that surfaces are composed

1.2. Texture filtering 3

of a large amount of tiny microfacets, each of which is a perfect specular mirror with
its own normal vector. Those normals (micro normals) are distributed according a
Normal Distribution Function (NDF) (also called Microfacet Distribution Function)
which corresponds to the D(h) term in Equation 1.1. This function determines the
overall roughness of the surface, and is most responsible for the size and shape of
the specular highlight. As properly stated in Heitz, 2014, in order to construct an
energy conservative model, the NDF needs to be normalized such that∫

Ω
D(h)(np · h)dw = 1 (1.2)

In practice, the most commonly used Normal Distribution Functions are the
Beckmann distribution and the Trowbridge-Reitz distribution:

• The Beckmann distribution is a physically-based microfacet distribution in-
troduced by Katzin, 1964.

DBeckmann(h) =
1

πα2(np · h)
exp(

(np · h)2 − 1
α2(np · h)2)

where α is the roughness parameter.

• The Trowbridge-Reitz distribution has a sharper peak and a larger tail than
the Beckmann distribution, which artists often find more suitable for modeling
realistic specular surfaces like metal.

DTrowbridge(h) =
α2

π((np · h)2(α2 − 1) + 1)2

Less important in this project, the shadowing-masking term G(wo, wi) in 1.1
describes the fraction of microfacets visible in both directions wo and wi. This func-
tion has a greater effect near grazing angles and for really rough surfaces. It is also
needed to keep the BSDF model energy conservative as described in Heitz, 2014.

1.2 Texture filtering

While Microfacet Theory tries to account for microscopic geometric details, larger
scale features results in variation in the surface properties on the shape manifold.
Surface structures like scratches on brushed metal or pores on human skin are often
too fine to be represented on the geometry but can be simulated by spatially varying
the orientation of the macro normal. This can be achieved using a technique called
normal mapping, where local normal information is stored in a 3 channels RGB
texture which will be projected on the surface during rendering. As for any tex-
turing techniques, aliasing artifacts might occur since textures are sources of high-
frequency variation in the final image. Anti-aliasing methods like filtering adjust
the frequency content of the texture based on the rate at which the texture is being
sampled. Aliasing is a well-known problem from Sampling Theory and Signal Pro-
cessing, and we know that the result of the ideal texture sampling process has to be
band-limited such that content frequencies beyond the Nyquist limit are removed.
We also know that this can be achieved by convolving the texture signal with a filter
kernel (sinc, Gaussian, ...). Figure 1.1 illustrates aliasing artifacts in a rendering of a
checkerboard texture on a plane.

4 Chapter 1. Introduction to appearance modeling and texture filtering

FIGURE 1.1: Checkerboard texture with (a) and without (b) aliasing
artifacts (Figure from GPU Gems)

In rendering, texture filtering is the method that handle aliasing and determine
the value of a texture look-up using the neighboring texels around the query loca-
tion. Texture filtering methods received a lot of attention in computer graphics, be-
ing an essential part of the rendering process. Nowadays, most common graphical
application leverage dedicated hardware for higher performance, optimizing mem-
ory access of the texture. The filter region is the projection of the screen space region
covered by a pixel in texture space. Most method approximate this projected square
with a parallelogram (a center and 2 vectors), or an ellipse. The size and shape of the
filter region will depend on the distance between the viewer and the texture surface,
as well as the orientation of the textured surface in respect to the camera orientation.
Based on the size filter region, we can distinguish two types of texture filtering:

• Magnification: If the distance is short enough, the filter region will be smaller
than a texel. In this case, texture filtering will magnify the texture and interpo-
late the texture content, avoiding blocking artifacts.

• Minification: If the texture is further away, the filter region will then cover
many texels, which might cause aliasing because of the higher frequency of
the texture content. The appropriate value will be define by texture filtering,
preventing aliasing.

Over the years, researchers suggested many different filtering methods, and here
are the most common ones:

• The nearest-neighbor filtering method isn’t a filtering method properly speak-
ing since it doesn’t alter the texture content at all. For a given pixel center, it
uses the value of the closest texel on the texture. It results in "blocking" artifacts
when the screen pixel is smaller than a texel and aliasing when larger.

• Bilinear filtering performs a bilinear interpolation of the 4 neighboring texel
around the projected screen pixel center. The weights used for the interpola-
tion are defined by the distance of projected screen pixel center to the center of
the different texels.

• Anisotropic filtering applies a different amount of filtering along the different
axes which prevents over filtering at grazing viewing angle.

1.2. Texture filtering 5

• Elliptically weighted average (EWA) filtering compensates aliasing artifacts
due to perspective projection. It calculates an ellipse in texture space and per-
forms a convolution of this ellipse with a filter kernel (often a Gaussian filter).
It is a much more flexible filter, having different filter extends in different direc-
tions, improving the results quality by properly adapting to different sampling
rates along the different axes.

Mipmapping

Texture filtering becomes expensive when the filter region covers many texels. For
that reason, we can use a technique called mipmapping that pre-filters the texture in
order to reduce texture I/O. The pre-filtered data will be stored in a mipmap texture,
which is a pre-computed sequence of images (called mipmap level) representing
a texture at different resolutions and was originally introduced by Williams, 1983.
Every image of the sequence has half the resolution of the previous one, starting at
the original resolution. Therefore, a mipmap on disk takes is a third bigger than the
original texture:

∞

∑
n=1

1
4n =

1
3

A texture look up decides which mipmap level to access based on the width of
the filter region. It will only access texels of this pre-filtered image, rather than all
the texels covered by the filter region. Then the filter method will only be applied
on those pre-filtered texels to compute the final value. In order to get a smooth tran-
sition between the mipmap levels, one can use trilinear filtering which performs a
linear interpolation between the results of bilinear filtering applied on two different
mipmap levels. Similarly, the same linear interpolation between the mipmap level
results can be applied with any other filtering methods.

Reflectance filtering

Unfortunately for us, shading a surface with linearly filtered normals does not re-
sult in the proper reflectance filtering. Consider the V-groove surface on Figure 1.2
with two normals pointing in different directions. Assuming the filter region covers
the whole V-groove, the filtering operation will return the average of both normal.
This means that the surface will appear totally flat at some distance due to filter-
ing, changing drastically the appearance of the object. For this reason, normal map
texture cannot rely on methods like mipmapping and/or standard texture filtering
techniques.

FIGURE 1.2: Reflectance filtering can drastically impact the appear-
ance of the surface since normals cannot be linearly filtered

6 Chapter 1. Introduction to appearance modeling and texture filtering

One solution to this problem is to super sample the texture using a naive Monte
Carlo approach and attempt to compute the reflectance over the filter region by tak-
ing more samples. However, this performs poorly when dealing with specular ma-
terial under high frequency lighting (like a sunny day). The specular energy will
be contained in a tiny region of the filter region, where the normals satisfy the half-
vector constraint, resulting in very high variance in this Monte Carlo integration.
The amount of samples needed to resolve renders in those conditions if far beyond
the budget production renders have in the normal course. Another solution is to use
more complex models that can represent multiple lobes at the same time. As shown
on Figure 1.2, a multi-lobe reflectance filtering technique could preserve the statistics
of the normal from the original unfiltered texture.

1.3 Previous work

Reflectance filtering

Olano and Baker, 2010 introduced Linear Efficient Antialiased Normal (LEAN) Map-
ping, a method for real-time filtering of specular highlights in normal maps. Their
method stores normal distribution information in a linearly-filterable form compat-
ible with standard filtering methods. They do so using the fact that the anisotropic
Beckmann distribution is a 2D Gaussian distribution projected onto a plane one unit
above the surface, and that 2D Gaussians can be linearly combined when working
with their moments only. They store the Gaussian first and second moments in two
different mipmap textures, that will be used during rendering to compute the ap-
propriate NDF. In a similar fashion, Christophe Hery, 2014 introduced a techniques
for efficiently calculating the effect of bump-maps on surface roughness. Dupuy
et al., 2013 introduced Linear Efficient Antialiased Displacement and Reflectance
(LEADR), which extends LEAN Mapping to displacement maps. Their work also
introduces a new physically-based microfacet model that includes shadowing and
masking effects in their computations.

As seen with Figure 1.2, a single Gaussian lobe is often inadequate for model-
ing the more complex microfacet normal distributions. Tan et al., 2005 introduced
a new framework using Gaussian Mixture Models (GMMs) for reflectance filtering.
Their method precomputes the parameters of those Gaussian Mixture Models using
Expectation-Maximization (EM) algorithm at different resolution and stores them in
a mipmap texture. Their method ensures alignment of the GMM in neighboring tex-
els such that the centers of the individual Gaussian elements in the GMM are closely
located. This way they can interpolate the individual Gaussian elements using the
same mathematical framework as LEAN. They do so by introducing an alignment
penalty coefficient in the cost function of the EM algorithm so that their fitting al-
gorithm automatically aligns the GMMs. Han et al., 2007 improves on the previous
method by leveraging lighting-BSDF convolution. They introduce a new mathe-
matical framework to perform reflectance filtering in the frequency domain. They
fit Mises-Fisher distributions (spherical Gaussian like functions) rather than Gaus-
sian distributions using a spherical Expectation-Maximization algorithm to improve
accuracy and facilitate normalization. The use of spherical distribution prevents
distortion of the hemisphere projection onto a plane, resulting in better accuracy at
grazing angle.

While the previously introduced methods focus on efficiency, other methods
praise accuracy and correctness. Yan et al., 2014 computes an accurate solution to

1.4. Solutions for a production renderer 7

the reflectance filtering integration by tessellating the normal map into fine triangu-
lar elements and analytically integrates over the filter region. Yan et al., 2016 pro-
poses a more efficient method that fits a large four-dimensional Gaussian Mixture
Model on the entire normal map. This parametric model has a closed-form solu-
tion for evaluating the normal distribution function for a given filter region. The
paper introduces the notion of position-normal distribution, a four-dimensional func-
tion on the cross-product space of surface positions and normals. Mixing millions
of 4D Gaussian, they can approximate this position-normal distribution function
accurately. They also use an acceleration hierarchy to efficiently query the position-
normal distribution and compute the underlying NDF for a given filter region. Yan
et al., 2018 improves on the two previous method, using Gabor kernels rather than
Gaussians. This way they are able to compute a wave optics reflection integral over
the surface path, introducing color effects in the highlights.

Spatially-varying BSDF models

Other research papers focus on spatially-varying BSDF models that are not driven
by textures. Those models often try to simulate a specific type of materials. For
instance Raymond, Guennebaud, and Barla, 2016; Werner et al., 2017; Dong et al.,
2015 focuses on materials exhibiting many tiny scratches like brushed metal.

Sparkling and glittering surfaces like snow, sand, skin or metallic paints were
investigated by Jakob et al., 2014. Leveraging memory-efficient procedural algo-
rithms, they introduced a stochastic hierarchy able to sample and evaluate discrete
microfacet distributions. Their method treats a surface as a fixed, finite collection of
microscopic facets. They use a stochastic hierarchy that defines a different specific
set of flakes at each pixel. The key idea behind their algorithm is that the microscopic
flakes are not stored in memory, but their count is computed by a deterministically
seeded stochastic process during the traversal of the hierarchy at render time. By
varying the density of flakes on the surface, we can change the appearance of glit-
ters in the image.

Atanasov and Koylazov, 2016 improved on the previous method, introducing a
model that does not require any precomputation and offers better overall perfor-
mance. Their method first performs a query on the stochastic hierarchy to explicitly
generate the normals of the flakes. The set of flakes can then be used as discrete
NDF for the microfacet model. The normals of the flakes are sampled from a real
microfacet distribution. Therefore, when increasing the density of the flakes within
the filter region, the material appearance tends to the smooth continuous microfacet
model. This allows their method to blend between both models, drastically reducing
cost when the filter region gets large.

1.4 Solutions for a production renderer

This project was done in the context of an internship at Weta Digital, aiming at as-
sessing existing current models for spatially-varying specular microstructures and
investigating new solutions that would fit in their production renderer.

Production renderers are highly complex systems, often decoupled in different
tools, libraries and plug-ins. When implementing new models in such frameworks,
we need to be well-aware of the magnitude of scenes visual effects studios render
nowadays. Please refer to ACM, 2018 for a deeper look at production rendering
environment of the largest visual effect studios. Here is a non-exhaustive list of
challenges imposed by the production environment at Weta Digital:

8 Chapter 1. Introduction to appearance modeling and texture filtering

• Currently, final render frames have a resolution of 2K (2048x1080) or 4K (4096x2160).
However, in order to represent fine details on a large assets, and handle the fact
that for close-up shots, a fraction of this asset might take most of the camera
viewport, the resolution of production textures vary between 4K (3840x2160)
to 32K (∼32000x16000). To give a order of magnitude, an uncompressed 32K
texture with a single floating point channel represents 2 gigabytes of memory.

• A surface is often composed of a multitude of BSDF layers in order to simulate
more realistic materials. For instance, artists can coat a gold surface with a
lacquer layer and add another layer of dust at the top. Each one of those layers
drive a different BSDF model, with its own set of spatially-varying parameters,
normals, tangents, ... In practise, production shaders can combine up to 32
layers, which drastically impacts the performances of shaders evaluation and
sampling.

• On top of this, complex scenes contains thousands of different assets, not count-
ing instantiating methods. Production renders are already limited by the amount
of memory of the cluster’s nodes (in average 128Gbs). Therefore, we need to
be careful about the additional memory cost of our solutions.

• Creativity is key in a production environment. It is crucial to make sure our
new models do not reduce artists freedom and expressiveness. Also, it is im-
portant to come up with easy-to-use solution, finding the right set of parame-
ters to expose to the users, and take away from the artist the burden of setting
dozen of incomprehensible thresholds and other variables.

• Our solution needs to be as transparent as possible from a pipeline point of
view, avoiding to complexify this already really sophisticated system.

Over the years, Weta Digital has developed its own physically-based produc-
tion renderer, Manuka. As most of its competitors, Manuka highly relies on uni-
directional path tracer and encompasses multiple importance sampling (MIS). How-
ever, unlike other physically-based renderer, Manuka’s workflow is composed of a
pre-shading phase before the light transport phase where the Monte Carlo integra-
tion is performed. This pre-shading phase finely tessellates the scene’s geometry
into micro polygons composed of vertices. More importantly, the shading graphs
are evaluated and the material parameters are stored on a per vertex basis. The stor-
age containing the vertices and their parameters is called the grid. Then, during the
light transport phase, when a ray hits a surface, the parameters of the closest ver-
tices are bilinearly interpolated and used to evaluate and sample the material mod-
els. The advantage of pre-shading (as oppose to shade-on-hit) is a better coherency
in the texture look up and shaders evaluation, leveraging caching and parallel/vec-
torized computations. It also means that textures are not needed during the light
transport phase, so texture storage and I/O can be properly optimized. For more
details regarding Manuka’s architecture, please refer to Fascione et al., 2018.

This special workflow adds another constraint to our solutions: textures can only
be accessed during the pre-shading phase, and only the data stored on the grid
is available during the light transport phase. We are also really limited with the
amount of additional data we can store on the grid, memory already been an impor-
tant bottleneck in this production environment. Currently Manuka supports dozens
of BSDF models and uses the LEADR technique for reflectance filtering of displace-
ment maps.

1.4. Solutions for a production renderer 9

This document

This document is structured as follow:

• Chapter 2 presents a novel technique for reflectance filtering, inspired by the
LEAN framework, using autoencoder neural networks.

• Chapter 3 describes our implementation of a discrete stochastic microfacet
model in Manuka that can simulate glittering surfaces and random scratches.

• Chapter 4 gives an overview of our modified expectation-maximization algo-
rithm for computing a mipmap of Gaussian Mixture Models on a normal map
efficiently. This chapter also discusses our GMM simplification scheme, lever-
aging optimal transport theory for computing the adequate number of Gaus-
sian elements in the mixture to achieve a target quality. We investigate different
approaches for properly and efficiently combining Gaussian Mixture Models
of different sizes in a texture filtering context. Finally, we propose an practical
implementation of this method in Manuka that scale to production needs and
improves on LEADR.

• Chapter 5 gives a conclusion to this thesis.

11

Chapter 2

Autoencoder for Reflectance
Filtering

2.1 Overview

This chapter presents a novel technique for reflectance filtering, leveraging the power
of autoencoder neural networks. Inspired by the LEAN mapping method intro-
duced by Dupuy et al., 2013, our new method generates a texture of linearly filter-
able parameters that can be used to drive a microfacet model implemented as a neu-
ral network at render time. The key idea of this method is to train the encoder part
of an autoencoder to learn how to project high dimensional NDF histogram onto a
latent space with lower dimensionality. In other words, the encoder learns how to
compress a slice of a normal map into a compressed representation (e.g. 16 floating
point numbers). An important constraint on the latent space and the encoder will be
to produce latent parameters compatible with texture filtering methods. Thus, we
would be able to store those latent parameters in a mipmap texture and use standard
filtering techniques to compute the set of parameters for a given filter region. The
decoder part of the autoencoder could then be used as a parametric microfacet dis-
tribution model, emulating the normal distribution function for the original slice of
the normal map given the filtered set of parameters. Figure 2.1 shows an overview
of our new method.

FIGURE 2.1: Autoencoder for reflectance filtering method overview

In this chapter, we first briefly introduce high-level concepts of machine learn-
ing to understand the autoencoder’s architecture, before diving in the details of
our method. We then present some results and discuss the usability of this new
reflectance filtering scheme in a production context.

2.2 Training set

The training dataset is the set of examples used to train a model. In supervised
learning, each element of the training set is a pair composed of an input data point

12 Chapter 2. Autoencoder for Reflectance Filtering

and the corresponding target output. Using methods like stochastic gradient descent
Kiefer and Wolfowitz, 1952, we are able to fit the parameters of the neural network
model by feeding the training data points to the neural network and computing
the gradient of a loss function comparing the target output and the output of the
network. Ideally, we want to build a training set as representative as possible of
the input the network will encounter in production. For this we selected a set of 24
normal map textures exhibiting different patterns, scales and surface features like
metal scratches or ocean waves as shown on Figure 2.2.

FIGURE 2.2: Training set composed of 24 normal map textures

As discussed in chapter 1, we are interested in computing the normal distribution
function of a surface under the filter region for a given normal map. Therefore our
training set will consist of pairs of slices of the normal map and their corresponding
NDF histogram. This can be done using a binning method where we finely sample
the normal map to compute the corresponding NDF histogram. In fact, it is more
efficient to directly pass the NDF histogram input data to the autoencoder rather
than the slice of normals itself. This way the network doesn’t need to learn about
the relationship between normals and NDF, and will focus on understanding and
compressing NDF histograms.

2.2.1 Normal map classification

To gain in training efficiency and accuracy of the NDF reconstruction, we could re-
strict the training dataset to a specific type of normal map texture (brushed metal,
ocean surface, ...) and train different specialized neural networks on the different
classes of textures. One could even train and use a classifier to define the classes of
textures and target the adequate specialized autoencoder for a given slice of normal
map. We ran a few experiments to get a better understanding of the feasibility of the
normal map classification. Principal Component Analysis (PCA) algorithm Jolliffe,
1986 can be used to project high-dimensional NDF histograms in 2D space. We can
generate a cloud points, sampling normal slices on the training set and computing a
2D point by projecting their NDF histogram with PCA. Figure 2.3 is the result of this
experiment.

We can observe clusters of points from the same texture on Figure 2.3 which
might indicate that some more sophisticated clustering algorithm might be able to
define distinct classes of NDF histogram. Note that this is a really naive way of
clustering slices of normal map, but it give us some understanding on the feasibility
of the problem. Also, the normal maps used in this experiment are really uniform,

2.2. Training set 13

FIGURE 2.3: Normal map slices clustering experiments with PCA

repeating the same pattern across the whole texture. Unfortunately this is rarely the
case in practise. Production textures will often contain a mix of different patterns,
which will make the classification problem much harder. Additional experiments
should be ran to fully understand the complexity of this problem. For this project,
we are interested in a more general solution, but this could be part of a future project.

2.2.2 NDF histogram representation

In order to work with neural networks, we need to represent NDFs in terms of a
finite set of values. While other methods use parametric models to represent an
NDF, we decided to work with discrete NDF histograms.

A normal distribution function is a function f : Ω → R with Ω being the unit
hemisphere. However a 2D parameterization of this hemisphere on a plane would
be more adequate when working with neural networks. We investigated different
types of parameterization for representing the NDF histograms in the context of this
project:

• Orthographic parameterization:

h→
{

x = hx
y = hy

• Spherical parameterization:

h→
{

φ =
arctan(hy/hx)

2π

θ = 2 arccos(hh)
π

As we can see on Figure 2.4, the orthographic parameterization provides bet-
ter locality for centered NDFs. It also introduces some distortion at grazing angle,
which might cause some issue when trying to properly normalize the NDF pro-
duced by the decoder network. However, this distortion means that a greater part
of the [0, 1]2 domain is dedicated around the upward normal vector. This will im-
prove the method’s accuracy since NDFs are often denser in this area. Note as well
that this parameterization doesn’t properly utilize the whole [0, 1]2, but only the unit
disk. On the other side, the spherical parameterization fully utilize the [0, 1]2 region
and doesn’t introduce any distortion a grazing angle. However it distorts the upper

14 Chapter 2. Autoencoder for Reflectance Filtering

FIGURE 2.4: Comparing the two parameterizations on NDF his-
tograms of different slices of normal map

region of the hemisphere, similar to the North and South poles being distorted on
a world map using the Mercator projection. One can also independently vary the
resolution of the φ and θ axes if needed which can be useful when working with dif-
ferent type of normal maps. However, this parameterization greatly loses in locality
meaning that a convolution kernel applied on this parameterization corresponds to
an anisotropic kernel shape on the unit hemisphere. Thus, the neural network might
lack in understanding of the content’s locality in the NDF it tries to reconstruct. In
practice, the orthographic parameterization results in more efficient training and
better NDF histogram reconstruction so this is the parameterization we will use in
our method to represent NDF histograms on the [0, 1]2 square.

2.2.3 Data engineering

The size of the slices of normal maps defines the amount of data the NDF relates
to, so it’s complexity. Therefore it is important that our training dataset contains
NDF histograms produced from slices of normal maps of varying size in order the
capture the whole spectrum of possible NDF histograms. In practice, we use slices
of size 2x2, 4x4 and 8x8 for our training. The filtering ability property of the latent
space implies that we should be able to combine multiple of those slices’ parameters
to reconstruct an NDF histogram that would have originated from a larger slice of
normal map. In order to enlarge our training set and prevent overfitting, we also

2.3. Network architecture 15

randomly apply transformations to our NDF histograms, so to generate new data
points in the training data set. We rotate the NDF histograms to make sure the
network learn have to handle structures with different orientations. We also vary
the magnitude of the normal map, which is the result of scaling the z component of
the normals in order to simulate different depth of the surface features.

2.3 Network architecture

2.3.1 Autoencoders

Autoencoders were first introduced by Ballard, 1987 and their purpose is to learn
a representation of the input data in a lower dimensional space. It consists of two
neural networks trained simultaneously: the encoder network and the decoder net-
work. The encoder compresses the input data into a short code, also called the latent
parameters. On the other hand, the goal of the decoder is to uncompress that code
to recover something that matches closely the input data. Autoencoders have been
widely used for different applications: the latent parameters often provide a more
intuitive representation of the input data, which can be used in the context of image
recognition/classification. Also, by reducing the dimensionality during compres-
sion, the autoencoder tends to only preserve the main feature of the input data. This
property gave birth to a variety of denoising algorithms using autoencoders.

Neural networks like the encoder and decoder of autoencoders are composed
of a sequence of neural layers. Over the years, researchers invented many different
types and variants of those layers. Let’s briefly have a look at the most commonly
used type of layers, that will be used to build our autoencoder later on:

• Fully-connected layer: Also called dense layer, the fully-connected layers can
be seen as a large tensor (multidimensional matrix), attributing weights be-
tween input elements and output elements. The value of the output elements
is computed as the weighted sum over the entire input matrix using the ten-
sor’s weight.

• Convolutional layer: Unlike fully-connected layers, convolutional layers only
sums over a subset of the input elements, called the convolution kernel. It re-
duces the number of overall parameters, allowing the network to be deeper
with fewer parameters.

• Activation functions: Another type of layer called Activation layer employs
a non-linear function to transform the output of other layers. Inspired by bio-
logical neural network, activation functions allow the neural network to work
on nontrivial problems using only a small number of nodes. For our neural
networks we played with the following different activation functions:

– Sigmoid:

f (x) =
1

1 + e−x

– Rectified linear unit (Relu):

f (x) =
{

0 for x ≤ 0
x for x > 0

16 Chapter 2. Autoencoder for Reflectance Filtering

– Parametric rectified linear unit (PRelu):

f (x, α) =

{
αx for x ≤ 0
x for x > 0

2.3.2 Loss function

When working with neural networks, one needs to define a loss function that will
be used to compute the gradient for the optimization algorithm. The choice of the
loss functions plays a big role in producing optimal models and better convergence
rate. The loss function is usually a function of the output of the network and the
target output and computes their difference.

MSE and Chi-square

We have worked with different loss function for this method:

• Mean Square Error (MSE) is one of the most widely used loss function.

MSE(x, y) =
1
N ∑

i
(yi − xi)

2

The MSE computes the averaged square different between the target and the
output’s values.

• Chi-square loss is a well-studied tool in statistics used to evaluate how well a
statistical model fits a data set.

χ2(x, y) = ∑
(yi − xi)

2

xi

where x is the reference histogram and y is the result from the autoencoder.

While the loss functions presented above are really easy to implement and can be
evaluated efficiently, they only account for local difference in the NDF histograms.
Tiny slices of a smooth normal map won’t exhibit much variance in their normal
distributions, and therefore the resulting NDF histograms will be really sharp. When
most of the distribution is concentrated in a fine spike, a slight change in the location
of that spike will results in high distance value when using MSE of Chi2. For that
reason, the resulting autoencoders tend to be more conservative and avoid returning
sharp NDF histograms. However, from a perception point of view, a slight change
in the spike location might be better than losing sharpness in our NDF histogram.
Consequently, we have to find better metric to compute the loss when training our
autoencoders.

Wasserstein distance

The Wasserstein distance is a distance function between probability distributions
known in computer science as the Earth mover’s distance. Assuming those distri-
butions are piles of earth, this metric can be viewed as the amount of dirt needed
to be moved times the distance it has to be moved in order to turn one pile into the
other. This metric has a strong connection to the Optimal Transport problem. A trans-
port plan between two distribution µ, ν is described by the function γ(x, y) which
gives the amount of dirt to move from x to y. It satisfies the following constraints:

2.3. Network architecture 17

∫
γ(x′, x)dx′ = ν(x)∫
γ(x, x′)dx′ = µ(x)

The Wasserstien distance is defined as the minimal cost out of all possible trans-
port plans:

C = inf
γ∈Γ(µ,ν)

∫
c(x, y)dγ(x, y)

The Sinkhorn-Knopp algorithm (SK) Knight, 2008 is an iterative method for
computing an optimal transport plan. Given two NDF histograms p and q (flatten
arrays) and a distance matrix (in our case using Euclidean distance) M defined as
follow:

Mij = exp(
−(i− j)2

λ
)

where λ is the regularization weight, the algorithm iteratively updates the weights
of two transport plan vectors u and v. u is the transport plan from p to q and v is
the transport plan from q to p. At each step, the algorithm updates the transport
coefficient vectors in the following way:

ui+1 = p/(Mvi)

vi+1 = q/(MTui)

After n iterations, the sub-optimal transport plan matrix Γ can be compute as
follows

Γ = (Ivn)M(Iun)

Given the final transport plan, the Wasserstein distance can be computed as

W = ∑
x,y

Γx,y(y− x)2

The key advantage of using an iterative algorithm is that we can trade perfor-
mance for accuracy by varying the number of iterations taken. In our method, a
sub-optimal solution of the transport problem is enough therefore we only need to
take a few iterations of the Sinkhorn-Knopp algorithm.

2.3.3 Training procedure and architecture

For both the encoder and the decoder, we ran experiments varying their compo-
sition in depth, type and number of layers. The training process was scripted to
run different architectures simultaneously on different machines in order to find the
optimal sequence of layers. Once the training and the evaluation of the resulting
autoencoders finished, we compared the results and refined our hyper-parameters
for the next generation of network architectures, based on the best autoencoders of
the previous generations.

Encoder architecture

This automatized training process also allowed us to test our method’s performance
using different number of dimensions for the latent space. The performance of our

18 Chapter 2. Autoencoder for Reflectance Filtering

method at render time is directly linked to the size of the latent parameters. A wider
vector implies multiple texture queries and a deeper and more complex decoder
network. Also, keeping Manuka’s architecture in mind, those latent parameters will
have to be stored on the grid during the pre-shading phase. In order to minimize
the memory impact of this method, we need to keep this latent parameter vector at
a reasonable size.

FIGURE 2.5: Encoder architecture with a 14-wide latent parameters

As shown on Figure 2.5, the encoder is exclusively composed of convolution,
dense and ReLU layers. After a few convolutional layers reducing the dimensional-
ity of the problem to solve, dense layers are applied to compute the latent parame-
ters.

Decoder architecture

For this project, we experimented with two different types of decoder.

• The first one aimed at reconstructing the whole NDF histogram for a given set
of latent parameters. This histogram could then be used to evaluate the PDF
of a specific half vector using bilinear interpolation. The overhead of decoding
the entire NDF histogram when only evaluating a couple half vector PDFs has
a significant impact on the performance of this model. Moreover, the resolu-
tion of the reconstructed NDF histogram band limits the frequency of the NDF
content. In other words, the resolution of the reconstructed NDF histogram de-
fines the maximum sharpness of our method. In practice, the NDF histogram
resolution needed to prevent blurring our materials was higher than accept-
able.

• The second type of decoder takes an additional two parameters, representing
the half vector we want to evaluate the PDF of. Those are the coordinates of the
orthographic projection of the half vector on a plane and will be concatenated
at the end of the latent parameter vector. As illustrated by Figure 2.6, this is
then passed through the decoder network, which will return a single floating
point number representing the PDF value of the passed half vector. Therefore
this model only computes the PDF for a single half vector which is much more
efficient than reconstructing the entire NDF histogram every time.

While the first type of decoder isn’t efficient enough to be used in a produc-
tion renderer and introduces some intrinsic roughness, in our experiments, it clearly

2.3. Network architecture 19

out-performs the second type of decoder in terms of fidelity of the NDF histogram
reconstruction. Given a simpler problem to solve, not having to make sense of the
2 additional parameters representing the half vector, this type of decoder doesn’t
need as much training to produce good quality results on the test set. However,
we believe that the second type of decoder could reach similar results with a bet-
ter understanding of the neural network domain and using modern neural network
architectures. In the context of this project, we spend most of our time improving
the results of the first type of decoder and elaborating the architecture of the second
type of decoder. For this reason, the rest of this section will discuss the architecture
and specificity of the second type of decoder while the Section 2.4 will only present
results of the first type of decoder, which are more representative of the capability of
this novel reflectance filtering technique.

As shown on Figure 2.6, the decoder is only composed of dense and PReLU lay-
ers. It first brings the input vector to a higher dimensional space (128 dimensions)
and then brings it down a single value using a sequence of dense layers. In theory,
by skipping the intermediate discrete representation (NDF histrogram) of the under-
lying NDF, this model can reconstruct NDF with features at any frequency, therefore
doesn’t introduce any intrinsic roughness.

FIGURE 2.6: Decoder architecture with a 14-wide latent parameters

In practice, using latent parameter vectors of length 14 seems to give the best
result. It is also ideal since once the two half vector coordinates are concatenated at
the end of the vector, the length of the decoder input will be 16 floating point num-
bers. This way our implementation can fully leverage SSE instructions for optimal
performance.

Texture filtering in latent space

In order to enforce the encoder to produce latent parameters that are compliant with
standard linear filtering techniques, we sub-sample the normal map slices to pro-
duce 4 sub-slices that we will use to generate 4 sets of latent parameters as shown
on Figure 2.7. Those parameters will be linearly combined and decoded. The result-
ing NDF histograms will be compared against the NDF histograms computed from
the original slice of the normal map. On top of that, each individual sub latent pa-
rameter vectors will be decoded to reconstruct the sub NDF histograms. Those will
also be compared to the original sub NDF histograms using the loss function and

20 Chapter 2. Autoencoder for Reflectance Filtering

the gradient of the error will be back-propagated to update the weights of both the
decoder and the encoder.

FIGURE 2.7: Training workflow using our autoencoder

In order for the decoder network to be used as a NDF in a renderer, the simu-
lated distribution has to be normalized according to Equation 1.2. Similarly to the
linear filtering property of the latent space, this could be enforced as a constraint
on the autoencoder during the training of the network. Unfortunately, this normal-
ization strategy wasn’t sufficient in practice. Therefore, given that the texture of
latent parameters is computed offline, we decided to spend a few extra CPU cycles
to compute a normalization map that we will be added as an extra channel in the
computed mipmap texture and used to normalize the PDF values at render time.
We believe that this way of solving the normalization problem is sub-optimal and
finding a better solution could be part of a future project.

2.4 Results

In this section, we present results and limitations of our method using the first type
of decoder which reconstruct the whole NDF histogram. First of all, Figure 2.8
shows the reconstruction of NDFs using the latest generation of encoder/decoder
after hours of training. As we can see, slightly different architectures produce dif-
ferent results. In overall, the accuracy of the reconstructed NDF is far from enough
for being used in a production renderer. Although, our models seem to capture the
main feature of the different NDFs in their respective latent parameters. Moreover,
autoencoders are known in the deep learning community for blurring reconstruc-
tion results due to the reduction of dimensionality in the latent space. Even though
there exists plenty of techniques to tackle this issue, we leave that to future work
given the restricted time constraint on this project. Another major concern of our
method is the fact that the decoder has to be evaluated at render time to simulate the
NDF. Our prototype implementation in Pharr, Jakob, and Humphreys, 2016 lever-
age vectorization capability of modern CPUs to speedup the evaluation routine of

2.4. Results 21

the decoder network. However, given its complex architecture presented in Section
2.3, it is far too expensive to be used in a production environment.

FIGURE 2.8: Results of the reconstruction of NDF histograms for dif-
ferent models of the same generation

More interestingly, Figure 2.9 demonstrates the linear "filterability" of the la-
tent parameters produces by the encoder. The first row shows a slice of a normal
map as well as four crops of this slice. We produce NDF histogram using the bin-
ning method, projection on the unit square using the orthographic parameterization.
Then we compute the corresponding latent parameters using a trained encoder and
reconstruct the NDFs passing those to the decoder, which are shown on the third
row. Finally, we linearly combine the 4 set of latent parameters and use the decoder
to reconstruct the NDF P, which is suppose to represent the normal distribution of
the original slice of the normal map (A). By comparing F, K, and P, we see that
results are quite promising, and the filtering of the latent parameters behaves prop-
erly. Finally, Figure 2.10 shows the stability of the filtering between 4 sets of latent
parameters along two axis. The resulting NDFs smoothly interpolate between the 4
original NDF at 4 the corners.

While producing results of insufficient quality and having an expensive evalua-
tion routine, we believe that our method could be improved running further exper-
iments with state-of-the-art deep network architectures. Encouraging progress in
neural network research is made every month, which let us hope that our promising

22 Chapter 2. Autoencoder for Reflectance Filtering

FIGURE 2.9: Latent parameters produced by the trained encoder can
be linearly combined before passed to the decoder and still result in

the proper NDF histogram

preliminary results will give birth to a usable framework for reflectance filtering in
the near future.

2.4. Results 23

FIGURE 2.10: Interpolation of 4 sets of latent parameters and their
reconstructed NDF histograms

25

Chapter 3

Procedural Microflakes Models

3.1 Introduction to multiscale BRDF

As described in section 1.3, other approaches seek to add the spatially-variant com-
ponent to microfacet models without relying on external textured input. For in-
stance, procedural generation techniques can be used to randomly disperse scratches
or metallic paint flakes over a surface without the need of any storage. However this
comes at a higher computational cost and makes it ambiguous onto how to handle
filtering in this case. Once the filter region covers many of those micro structures,
those need to be accounted for in the underlying microfacet model rather than being
stochastically sampled. In this chapter we take a deeper look into the solution intro-
duced by Atanasov and Koylazov, 2016 and Jakob et al., 2014 and present our own
implementation in Manuka with its additional features and limitations.

The key idea behind both methods is to simulate the distribution of a finite num-
ber of flakes on the unit texture space. In order to evaluate their model, given a filter
region, an incoming direction and an outgoing direction, both methods simply com-
pute the fraction of flakes satisfying the half vector constraint, meaning the flakes
whose normal is halfway between the incoming and outgoing direction. By varying
the density of the flakes and their reflective property, those methods can be used to
model a large range of materials.

Jakob et al., 2014 introduces the concept of multiscale BRDF which describes the
average response of the microfacet BRDF over a finite area A and a finite solid angle
Ω around the incident direction wi. Mathematically, it can be defined as following:

f̂ (p, wo, wi) =
1

a(A)σ(Ω)

∫
A

∫
Ω

f (p, wo, wi)dwodp (3.1)

with a(A) the surface area of A and σ(Ω) the area of Ω.
He then introduces a discrete analogue of the continuous microfacet distribution

which represent the fraction of flakes satisfying the location and angle constraints:

D̂(h) =
1
N

N

∑
n=1

I(pn ∈ A)I(wn ∈ Ω) (3.2)

Combining both equations 3.1 and 3.2, accounting for the change of variables
and assuming that other terms of the microfacet BRDF equation 1.1 (like Fresnel,
shadow-masking) are constant between different microfacets, we can derive a sim-
pler formula for the multiscale BRDF:

26 Chapter 3. Procedural Microflakes Models

f̂ (p, wo, wi) =
(wi · h)F(wo, wi)D̂(h)G(wo, wi)

a(A)σ(Ω)(np ·wo)(np ·wi)

In practice the area A is defined by the filter region and Ω is computed as the
cone of radius γ centered around wi. Intuitively, the parameter γ can we seen as
scaling factor on the light source radius. The higher the value of γ is, the smoother
and less glinty the surface will appear.

3.2 Implementation

3.2.1 Stochastic hierarchy

The next challenge is to efficiently compute values of D̂(h) for a given filter region.
For this Atanasov and Koylazov, 2016 and Jakob et al., 2014 introduced algorithms
for generating the flakes count on the fly using a stochastic hierarchy. Both methods
employ a similar approach, however Jakob et al., 2014’s method requires expen-
sive pre-computations which prevents it to scale to a production level of complexity.
Therefore, for the rest of this chapter we will focus on Atanasov and Koylazov, 2016’s
approach.

The stochastic hierarchy in Atanasov and Koylazov, 2016 is implemented as a
quad-tree where the root node contains all the flakes. Each node uniformly dis-
tributes its flakes between its four children. On top of that, every node consists of
a 64-bits state, which will be used to assign a 64-bits state to each one of its 4 chil-
dren using a four xor-shift-based generators like Code 3.2.1. None of that is stored
in memory, except for root’s total number of flakes and its 64-bits state. The rest of
the nodes will be generated on the fly during the hierarchy traversal, keeping a very
low memory profile for this method.

uint_64_t NextState(uint64_t x)
{

x ^= x << 13;
x ^= x >> 7;
x ^= x << 17;
return x;

}

LISTING 3.1: xor-shift-based generator code

3.2.2 Evaluation and sampling procedure

In order to define the number of flakes under the filter region and their orientations,
we query the stochastic hierarchy by recursively computing intersection of the nodes
and the filter region in a depth-first order, starting at the root. During the traversal,
we maintain a list of all the flakes that intersect with the filter region, which will be
processed later-on. A node is considered as a leaf node if it satisfies one the the two
following conditions:

1. the number of flakes in the node is smaller than the threshold K

2. the depth of the node is higher than T

In practice, working with (K, T) = (16, 15) seems to be adequate. When a leaf node
is encountered, we use the 64-bits state of this node to generate the normal vectors nj

3.2. Implementation 27

for all the flakes it contains. Those normals are sampled out of the user-defined un-
derlying flake distribution (GGX or Beckmann). Note that if the node is not entirely
contained within the filter region, we also need to generate the location of those
flakes and add to the list only the ones that fall in the filter region. For all the flakes
for which the reflection direction rj is contained in the solid angle Ω, we compute a
weight

wj = nj · rj

where rj is the reflection direction given the flake’s normal nj and the incoming light
direction. Note that the set of pairs (rj, wj) are cached such that they can be reused
for the sampling procedure or importance sampling computations. By summing
those weights, we can compute an accurate approximation of the microfacet distri-
bution

D̂(h) ≈ 1
N ∑

j:rj∈Ω

wj

In order to sample a direction i out of this discrete microfacet distribution, we
first stochastically sample one of the cached flakes proportionally to their weights.
Then we uniformly sample a direction in the cone of radius γ around the sampled
flake’s reflection direction with probability

1
π(1− cos(γ)

Finally, since this direction could also have been sampling after picking another flake
(with overlapping cones), we have to compute the true probability of sampling i out
of the list flakes as

p(i) =
∑j:i·rj≥cos(γ) wj

π(1− cos(γ))∑j:i·rj≥cos(γ) wj

Given the fact that flake’s normals are drawn out of a standard microfacet dis-
tribution (GGX, Beckmann), it is expected that, at a far distance, when the number
of flakes contained within the filter region is large enough (> 1000), the appear-
ance of the material tends to the appearance of the same material using the standard
microfacet distribution instead. Therefore, since evaluating the standard microfacet
distribution is much cheaper, we can switch to the standard model when the amount
of flakes is greater than a user-defined threshold. Moreover, to ensure smooth transi-
tion between the two models, we perform a progressive blending starting at a lower
threshold (500 flakes) ending at the higher threshold (1000 flakes), where we evalu-
ate both models and linearly interpolate the results.

3.2.3 Flakes control

Our implementation exposes different parameters to the user that change flake’s
properties in this discrete model. By playing with those parameters, the user will
be able to generate a large spectrum of varying materials needed in production. For
instance, we extend the describe model such that flakes can take different shapes
and orientations. We also worked around the density assumption of Atanasov and
Koylazov, 2016’s method such that flakes can be greater than a pixel and sparsely
distributed. Finally, for better integration in Manuka’s layering system, we define
different reflection/transmission modes that will be triggered when no flakes are
found under the filter region.

28 Chapter 3. Procedural Microflakes Models

3.3 Results

We implemented the discrete microfacet model presented above in Manuka, extend-
ing the already existing large palette of BRDF models in Weta’s pipeline. This new
set of BRDFs are particularly useful given the pre-shading architecture of Manuka
since it is not possible to evaluate procedural functions at render time like other ren-
derers would do when evaluating the shading graph for a hitting point. Figure 3.1
demonstrates the blending between our discrete microfacet model and the under-
lying standard microfacet model (here GGX). The pig at the back is fully rendered
using GGX while the pig at the front uses the discrete model. Figure 3.2 shows dif-
ferent appearances achieved varying the flake density and their size.

FIGURE 3.1: The procedural flakes model smoothly transition to the
underlying microfacet distribution

FIGURE 3.2: Different look varying the flakes size and density

29

Chapter 4

Texture-based reflectance filtering
with Gaussian Mixture Models

4.1 Method overview

From an artistic standpoint, the procedural techniques introduced in Chapter 3 lack
of control and expressiveness. Despite the parameters controlling the flake’s den-
sity and shape, the user cannot adjust the location of the procedural flakes. In this
chapter, we introduce a method that tackles this problem by giving control over the
spatially-varying features of the material using texture mapping as in Chapter 2. As
discussed in Section 1.3, already many texture-driven reflectance filtering methods
exists with their respective set of limitations and constraints. Our method is greatly
inspired by the work of Tan et al., 2005 which combines the power of Gaussian Mix-
ture Models and the texture mipmapping technique. One can see it as a extension
of the LEAN method (Olano and Baker, 2010) or LEADR (Dupuy et al., 2013), which
is really convenient for us since those two are already implemented in the current
rendering pipeline at Weta Digital.

We compute a mipmap of Gaussian Mixture Models such that every texel of
each mipmap level best fit the Normal Distribution Function represented by that
texel. With production texture’s resolution reaching 32K, using a standard Expecta-
tion Maximization algorithm would be to slow to fit all the parameters of the Gaus-
sian Mixture Models in the mipmap. For instance, texels at the coarsest levels of
the mipmap would have to fit parameters of their Gaussian Mixture Model on input
sets of approximately half a billion normals. Therefore we introduce in Section 4.4
a reformulation of the EM algorithm which fits the model’s parameters on a larger
target Gaussian Mixture Model. When computing the mipmap level sequentially,
parameters of a specific texel can be computed using this algorithm on the combi-
nation of 4 Gaussian Mixture Models sampled one level below. As mentioned in
Section 1.4, memory efficiency is key in order to handle complex production scene.
Tan’s method uses a constant number of Gaussian elements in the Gaussian Mixture
Models throughout the whole mipmap texture. This is very inefficient for textures
exhibiting high-frequency details only on a fraction of the texture. Imagine a flat
piece of metal where only a few scratches are scattered on the surface. While mul-
tiple Gaussian elements are needed to properly represent the underlying NDF close
to the scratches, a single Gaussian element can perfectly represent the flat areas. For
this reason, we use a simplification scheme that we introduce in Section 4.6 to re-
duce the size of the Gaussian Mixture Models based on the NDF’s complexity. This
way, we dynamically allocate more Gaussian elements around the high-frequency
contents (like scratches) in the texture and therefore wisely manage the memory im-
pact of our method. Notice that in the case where we only use a single Gaussian
elements, our method should fall back to LEAN/LEADR.

30 Chapter 4. Texture-based reflectance filtering with Gaussian Mixture Models

4.2 Gaussian Mixture Models

In the field of statistics, statistical models are used to approximate the distribution
of a data set. The Gaussian distribution is a very commonly used model for the
distribution of continuous variables. The D-dimensional multivariate Gaussian dis-
tribution takes the form

N (x|µ, Σ) =
1√

(2π)D|Σ|
exp

{
−1

2
(x− µ)TΣ(x− µ)

}
with µ the mean of the distribution and Σ its D× D covariance matrix.
The Gaussian distribution is a well studied model and has already been proven

useful in many other Computer Graphics algorithms. This mainly comes from the
simplicity of its evaluation and sampling routine. Moreover, there exists a closed-
form expression of its integral over a region, as well as a closed-form formula for the
convolution of multiple Gaussian distributions together.

Mixture models provide a framework for building more complex probability
distributions, combining multiple simpler distribution functions. The power of mix-
ture models lies their ability to represent complex distribution function with a lim-
ited number of parameters. Moreover, one can often find analytic expression for
evaluation of integral over those models, where we would rely on expensive numer-
ical methods such as Monte Carlo integration when working directly with the large
data set. Gaussian Mixtures Models (GMM) are widely used in pattern recogni-
tion, statistical analysis, data mining, etc. They can be seen as a simple linear combi-
nation of of Gaussian elements, aiming at providing a richer model than the single
Gaussian distribution. The probability density function of GMM(Θ) is defined by

p(x|Θ) =
K

∑
k=1

wkN (x|µk, Σk)

with the set of parameters

Θ = {wk, µk, Σk : 0 < k < K}

Given the constraint that distribution functions need to integrate to 1, the param-
eters must respects

K

∑
k=1

wk = 1

The more Gaussian elements in the GMM, the more expressive our model is.
This is really important in our method since it will allow users to adjust the com-
plexity and cost of our method depending on their needs, the complexity of the
texture and the level of accuracy they are aiming for.

4.3 Expectation-Maximization algorithm

Suppose we have a data set X = {x1, ...xN} that we want to model using GMM(Θ).
We define the log-likelihood metric

ln(p(X, Θ)) =
N

∑
i=1

ln

{
K

∑
k=1

wkN (xi|µk, Σk)

}

4.3. Expectation-Maximization algorithm 31

which represents the probability of the data set X to be drawn from GMM(Θ).
Expectation-Maximization (EM) algorithm introduced by Dempster, Laird, and

Rubin, 1977 is an iterative method for compute optimal parameters of a statistical
model by maximizing the log-likelihood function. The EM algorithm repetitively
performs three steps:

1. Expectation step: use the current GMM to compute the responsibilities of ev-
ery Gaussian element regarding to each data point of the input data set. This
quantity is defined by the following formula:

γi,k =
wkN (xi|µk, Σ)

∑K
j wkN (xi|µk, Σk)

2. Maximization step: re-estimate the weight, mean and covariance matrix of
each Gaussian elements of the GMM using the responsibilities computed in
the expectation step.

wk =
∑N

i γi,k

N

µk =
∑N

i γi,kxi

Nwk

Σk =
∑N

i γi,kxixT
i

Nwk
− µkµT

k

3. Evaluation step: evaluate the log-likelihood function with the current model.
It can be shown that each update of the parameters Θ increases the log-likelihood,
ensuring the convergence of the algorithm to the maximum log-likelihood.

The EM algorithm iteratively repeats those three steps until it reaches the user-
defined convergence criterion:

ln(p(X, Θ)) > λ

Initialization With the log-likelihood function being non-convex and possessing
many stationary points, the convergence of the EM algorithm often depends on the
initialization of the model. A lot of research has been done on how to best initial-
ize the parameters Θ, and clustering algorithms are popular for approaching this
problem. In our implementation, we use an initialization method called K-mean++
introduced by Arthur and Vassilvitskii, 2007. This method spreads out the Gaus-
sian element’s center in order to better cover the region of interest. The first center
is chosen at random from the data points and the subsequent centers are chosen
based on the remaining data points with a probability proportional to the square of
the distance of the closest existing center. Note that the original method is stochas-
tic and produces different initialization parameters every time we run it. To ensure
temporal coherency across frames, we need our initialization procedure to be deter-
ministic such that two subsequent varying textures use similar initialization param-
eters. This can be achieved by removing the random component of the algorithm
described above, by always choosing the data point that is the furthest from all ex-
isting centers as our next center. Blömer and Bujna, 2013 introduced a method that
modify and extend the resulting set of K centers to a complete GMM by computing
their corresponding weights and covariance matrices.

32 Chapter 4. Texture-based reflectance filtering with Gaussian Mixture Models

4.4 EM algorithm for Gaussian Mixture Models (GMM-EM)

In this section we present a reformulation of the EM algorithm called GMM-EM that
computes the optimal parameters of a GMM with K Gaussian elements to fit a larger
GMM with K′ Gaussian elements (so K < K′) (let’s call the target Gaussian Mixture
Model GMM′) This reformulation is greatly inspired by the work of Verbeek, R. J.
Nunnink, and Vlassis, 2006 which introduced the Accelerated EM algorithm. Their
method uses cached statistics of clusters of the input data points to define a lower
bound on the data log-likelihood. It offers a speedup at least linear in the number
of data points which is great when dealing with large input dataset. By considering
the Gaussian elements in the target GMM as clusters of data points, Θ becomes the
cached statistics in the Accelerated EM algorithm.

As descibe in the paper, a lower-bound on the log-likelihood between GMM and
GMM′ can be defined as follow:

Λ =
K′

∑
k′

wk′
K

∑
k

γk′,k

(
log

wk

γk′,k
+ 〈log(p(Θ′k′ , Θk))〉

)
where

〈log(p(Θ′, Θ))〉 = −1
2

(
log |Σ|+ µTΣ−1µ + tr(Σ−1(Σ′ + µ′Tµ′))− 2µTΣ−1µ′ + log(2π)

)
and γk′,k are the responsibility values between the Gaussian elements of GMM

and GMM′ computed during the expectation step. Similarly to the original EM
algorithm, the GMM-EM algorithm is repetitively performs 3 steps:

1. Expectation step: compute the responsibilities of every Gaussian elements Θk
in GMM regarding to every Gaussian elements Θ′k′ in GMM′.

γk′,k =
wk exp(〈log(p(Θ′k′ , Θk))〉

∑K
k′′ wk′′ exp(〈log(p(Θ′k′ , Θk′′)〉

2. Maximization step: re-estimate the weight, mean and covariance matrix of
each Gaussian elements of the GMM using the responsibilities computed in
the expectation step.

wk =
∑k′ γk′,k

N

µk =
∑k′ γk′,kµk′

Nwk

Σk =
∑k′ γk′,k(Σk′ + µT

k′µk′)

Nwk
− µkµT

k

3. Evaluation step: evaluate the log-likelihood function of the updated model.

Again, similar to the standard EM algorithm, GMM-EM iteratively repeats those
three steps until it reaches the defined convergence criterion:

Λ > λ

4.5. Computing a mipmap of Gaussian Mixture Models 33

FIGURE 4.1: Fitting a GMM with 8 Gaussian elements on a target
GMM with 16 Gaussian elements using the GMM-EM algorithm

4.5 Computing a mipmap of Gaussian Mixture Models

In this project, we extend Tan et al., 2005’s work using the GMM-EM algorithm for
better scalability. As briefly mentioned in Section 1.4, texture resolutions in a pro-
duction context can reach 32K, which breaks the usability of Tan’s method since the
mipmap pre-computation would be too expensive. Using the GMM-EM algorithm,
we are able to fit the parameters of the GMM of a specific texel on the combination
of the corresponding four GMMs from the mipmap level below. This allows the
mipmap generation to scale to high resolution textures since the fitting algorithm
will never have to work with more than 4 × K data points at a time, where K is
the maximum size of the GMMs. On the other hand, with Tan’s method, the fit-
ting algorithm has to deal with large regions of the input texture for computing the
GMM parameters of the texels. However, our solution implies a loss in accuracy
at every level of the mipmap since the fitting isn’t perfect when limiting the size of
the GMMs. We found more important to have a method that scale to production’s
needs and note that it is also always possible increase the accuracy of our method
by increase the maximum size of the GMMs (K) if needed. As a future experiment,
we would like to try to fit the GMM’s parameters a specific texel on a wider com-
bination of the GMMs coming from deeper levels of the mipmap. This could even
be a control parameter in the mipmap generation tool that users could set based on
the texture content and resolution. In practise, we found that using the GMM-EM
algorithm produces good results, even at a coarser level of the mipmap. As shown
on Figure 4.11, the second to last level of the mipmap (4 texels) generated with our
method from a carbon fiber pattern normal map successfully represents the 4 fibers
of the carbon pattern. And as expected, the coarsest texel of that mipmap represents
the cross-shaped NDF, typical from the carbon fiber materials using 8 Gaussian ele-
ments, as shown on Figure A.6. Those results wouldn’t be achievable using simpler
methods like LEAN or LEADR.

Slope domain parameterization

Based on the current implementation of LEAN and LEADR in Manuka, we opted
for the slope domain parameterization (see Heitz, 2014) for representing the NDF
with GMMs. With this parameterization, half vectors are projected onto a plane

34 Chapter 4. Texture-based reflectance filtering with Gaussian Mixture Models

perpendicular to the surface normal, one unit above the surface. By using the same
parameterization as LEAN and LEADR in our implementation, it greatly simplifies
the integration of this new scheme with the current BRDF models and the current
shader library. On top of that, our mipmap generation tool takes a LEAN map as
input, stores it as the finest level of the new mipmap and generates the subsequent
levels based on the LEAN data. Therefore it makes sense to work with the same
parameterization.

4.6 GMM simplification

As mentioned in the introduction of this chapter, our method exploits a simplifica-
tion technique to adapt the size of the Gaussian Mixture Models to the complexity
of the Normal Distribution Function they approximate. By doing so, we are able to
drastically reduce the memory cost of our method in comparison to Han’s approach
as we will see later in this section.

Garcia, Nielsen, and Nock, 2010 presents a GMM simplification method based
on a hierarchical clustering algorithm, where they explore a hierarchical representa-
tion of the initial GMM to find the optimal number of elements and their parameters.
While their method aims at reducing the size of very large GMMs (thousands of ele-
ments), our goal is to find a more compact version of the original GMM (less than 32
elements) focusing on accuracy. Note that the simplification process will happened
during the mipmap generation and not at render time, therefore we can afford a
computationally more expensive approach to get more accurate results. Given the
efficiency of our GMM-EM algorithm, we could simply fit GMMs of different sizes
and keep the smaller one that reaches the desired level of accuracy (complexity of
O(k)). With the same idea in mind, we could perform the optimal size search in a
bisection fashion, starting fitting a GMM with half the number of elements, and pro-
gressively fit GMMs of different sizes (complexity of O(log(k))). While those two
ideas are simple to implement, they both rely on the fact that we have a good metric
in hand to measure the accuracy of our GMM against the initial GMM. Unfortu-
nately, this is a much harder problem than expected, and we will focus the rest of
this section of solving it.

4.6.1 Gaussian Mixture Model distance metrics

Kullback-Liebler divergence

The Kullback-Liebler (KL) divergence is the measure of how one distribution di-
verges from a second. This metric is also called the information gain since it repre-
sent the amount of information gained about the second distribution given the first
one. In the case of 2D Gaussian distributions, the Kullback-Libler divergence has the
following analytic formula:

DKL(Θ, Θ′) =
1
2

(
tr(Σ′−1Σ) + (µ′ − µ)TΣ′−1(µ′ − µ)− 2 + ln

(
|Σ′|
|Σ|

))
The Kullback-Leibler divergence is not a distance metric since it is not symmet-

ric and does not satisfy the triangle inequality. One way of computing a symmetric
distance using the KL divergence is by taking the average of the the inverted asym-
metric divergence:

4.6. GMM simplification 35

Dsym−KL(Θ, Θ′) =
1
2
(DKL(Θ, Θ′) + DKL(Θ

′, Θ))

The symmetric KL divergence is a metric between two Gaussian distribution, but
it is unclear how to extend it to Gaussian Mixture Model. By using the responsibility
values computed in the EM algorithm, we can compute the divergence between two
GMMs as the weighted sum of the KL divergence between their Gaussian elements

DGMM−KL(Θ, Θ′) =
K

∑
k=1

K′

∑
k′=1

γk′,kDsym−KL(Θk, Θ′k′)

Unfortunately, as described in Section 2.3.2 for the Mean Square Error or Chi-
square loss performed on NDF histogram, the symmetric KL divergence metric isn’t
a perceptive metric in the reflectance appearance sens. This means that while the
result of the distance computation between two distributions might be large, the re-
sulting reflectance appearances using one or the other are really similar. Two sharp
Gaussian distributions with a slightly different center will give a really close appear-
ance but their KL divergence value will be very high.

Optimal transport for Gaussian Mixture Models

In Section 2.3.2, we introduced the Wasserstein distance as a solution to this prob-
lem. Similarly, based on the work of Yongxin Chen, 2018, we can derive an efficient
method for computing an upper bound of the Earth-Moving distance for Gaus-
sian Mixture Models. An analytic formula for computing Earth-Moving distance
between two Gaussian distributions is derived in their paper:

W2(Θ, Θ′)2 = ||µ− µ′||2 + tr(Σ + Σ′ − 2(Σ
1
2 Σ′Σ

1
2)

1
2)

The Wasserstein distance between two Gaussian Mixture Models is then given
by

DEMD(Θ, Θ′) = min
π

√√√√ K

∑
k=1

K′

∑
k′=1

π(k, k′)W2(Θk, Θ′k′)
2)

with π(k, k′) the optimal mass transport (OMT) map. One can compute the solution
of the discrete OMT problem using standard linear programming. However, we
found that using the following approximation resulted in very similar result for a
reduced cost:

DEMD(Θ, Θ′) =

√√√√ K

∑
k=1

K′

∑
k′=1

π∗(k, k′)W2(Θk, Θ′k′)
2

with

π∗(k, k′) ∝
1

W2(Θk, Θ′k′)
2 and

K

∑
k

π∗(k, k′) = 1

4.6.2 Simplification scheme

Our simplification scheme uses the distance metric defined above to compare a
reduced-size GMM against the fitted GMM with the maximum number of elements.

36 Chapter 4. Texture-based reflectance filtering with Gaussian Mixture Models

If the distance is smaller than a user-defined simplification threshold, then the bi-
section search continues with a smaller size GMM, otherwise larger. The search
is performed until the optimal size GMM for the given simplification threshold is
found. Pseudo code 4.6.2 implements the bisection search using the approximation
of Earth-Moving distance function and the GMM-EM fitting algorithm.

// target Gaussian Mixture Model
GMM targetGMM = ...;

// maximum GMM size
int k = 8;
// simplification threshold
float st = 0.002;

GMM largeGMM = gmm_em_fitting(targetGMM , k);

k /= 2;
int dk = k;

while (dk >= 1)
{

GMM reducedGMM = gmm_em_fitting(targetGMM , k);

// bisection based on distance metric
dk /= 2;
if(distanceEMD(reducedGMM , largeGMM) > st)

k += dk;
else

k -= dk;
}

LISTING 4.1: pseudo code for simplification scheme

Figure 4.2 shows the results of our simplification scheme on different normal
maps. We render a density map of the GMMs for every level of the generated
mipmap texture. Texels at level 0 always contain a single Gaussian element since
the NDFs of those texels are Dirac delta functions representing a single normal. As
we can observe on Figure 4.2c, the size of the GMMs around the scratches are higher
while only a single Gaussian elements are used to represent the flatter areas. At a
higher mipmap level, the size of the GMMs depends on their ability to represent
really complex NDFs. For instance, at a larger scale, the waves normal map exhibits
lower frequency features that can be handled by a reasonable sized GMMs. How-
ever, very large GMMs would be needed to capture the details of the scratches at
a large scale on the scratches texture. Thus smaller GMMs are used to represent a
rougher approximation of the surface.

Table 4.1 demonstrates the cost reductions of using the simplification scheme
during the mipmap generation. We compare our results to the LEAN/LEADR method
which only uses a single Gaussian element per texel, and Tan’s method which uses
a constant number of Gaussian elements throughout the whole mipmap. Note that
the results of the simplification method depends on the simplification threshold de-
fined by the user. This threshold defines the acceptable distance to the larger GMM
at which we allow the algorithm to reduce the GMM. By varying the value of this
threshold, we can navigate between using a single Gaussian elements (LEAN) to
using the maximum number of Gaussian elements at every texel. Figure 4.2c and
4.2d show the result of the simplification scheme ran on the same normal map with

4.7. Reflectance filtering with Gaussian Mixture Models 37

(A) carbon normal map - simplification threshold = 0.002

(B) waves normal map - simplification threshold = 0.002

(C) scratches normal map - simplification threshold = 0.002

(D) scratches normal map - simplification threshold = 0.008

FIGURE 4.2: Gaussian density at the different mipmap levels

different simplification threshold. As observed in the last two row of Table 4.1, the
overall size of the mipmap decreases as we increase the simplification threshold.

LEAN Han’s method ours reduction (%)
carbon (0.002) 5461 27304 7287 73%
waves (0.002) 5461 27304 12853 52%
scratches (0.002) 5461 27304 10234 62%
scratches (0.008) 5461 27304 6971 74%

TABLE 4.1: Simplification and Gaussian elements density statistics

4.7 Reflectance filtering with Gaussian Mixture Models

Mipmap generation is a form of texture pre-filtering such that at render time we only
have to combine a few pre-computed values. In our case, while the fitting algorithm
is employed to compute the parameters of the GMMs stored in the mipmap, we
need a efficient solution to combine GMMs sampled on the texture at render time.
In this section we take a closer look at different solutions for combining multiple set
of GMM parameters to produce the final GMM that will be used by the renderer
as NDF for the BRDF models. In the context of our production renderer, we need
to minimize the size of the resulting GMMs since those will be stored on the grid
during the pre-shading phase.

In Chapter 1 we introduced the concept of magnification and minification in the
context of texture filtering. As a reminder, minification is the case where the repre-
sentation of the data has a lower resolution than the input data. Data points have to

38 Chapter 4. Texture-based reflectance filtering with Gaussian Mixture Models

be appropriately combined to produce a value representative of the input data and
prevent aliasing. On the other hand, magnification occurs when the representation
of the data has a higher resolution than the data itself. Data need to be interpolated
to generate the in between values.

4.7.1 Filtering and interpolation of Gaussian elements

Given two Gaussian elements and their parameters Θa and Θb, we define here the
filtering and interpolation operator that can be used to generate a range of Gaussian
distributions along the axis t. Both operators result in Θa at t = 0 and Θb at t = 1.

• Interpolation linearly interpolate the centers and the covariance matrices of
Θa and Θb. If those Gaussian distributions represent NDFs, intuitively this
operator can be seen as the simulation of a smooth curved surface, starting
with the orientation and the roughness of Θa and ending with the orientation
and roughness of Θb. Therefore, Interpolation is the right operator in the
case of magnification.

Θc = Interpolation(Θa, Θb, t) =
{

µc = (1− t) · µa + t · µb,
Σc = (1− t) · Σa + t · Σb

• Filtering results in a distribution that tries to best fit both Θa and Θb. It does so
by increasing the variance of the Gaussian distribution which gives rougher re-
sults. Filtering is the result of minimizing the Mean Square Error as described
in Olano and Baker, 2010.

Θc = Filtering(Θa, Θb, t) =
{

µc = (1− t) · µa + t · µb,
Σc = (1− t) · (Σa − µT

a µa) + t · (Σb − µT
b µb) + µT

c µc

(A) interpolation

(B) filtering

(C) blending

FIGURE 4.3: Interpolation, filtering and blending operation on Gaus-
sian distributions

Figure 4.3a shows a range of Gaussian distributions generated with the Interpolation
operator. As expected, the distributions produced around t = 0.5 do not represent
any existing data of the two original Gaussian distributions. On the other hand,
Filtering increases the variance of the model to counter this effect as we see on Fig-
ure 4.3b. Unfortunately, this results in rougher results in the context of reflectance

4.7. Reflectance filtering with Gaussian Mixture Models 39

filtering during minification. Ideally, results of the reflectance texture minification
would only contain data existing in the two original Gaussian distributions while
still providing a smooth transition from one to the other. This ideal solution is shown
on Figure 4.3c and is the result of a third operator called Blending.

• Blending, unlike the two other operators, never modifies the parameters of the
Gaussian distribution, and therefore only produces distributions that exclu-
sively represent existing data of the two original Gaussian distributions. This
can only been achieved using higher order models, such as Gaussian Mixture
Models, where only the weights of the Gaussian elements will be affected by
the Blending operator.

Θ = Blending(Θa, Θb, t) = {1− t, µa, Σa} ∪ {t, µb, Σb}

Fortunately for us, we are already dealing with Gaussian Mixture Models in our
method, so it is not an issue if the minification procedure relies on them to produce
more accurate results.

4.7.2 Reflectance filtering operators on GMMs

It is necessary for us to extend those operators to work with Gaussian Mixture Mod-
els as input parameters rather than single Gaussian distributions in order to use
them in our method. Tan et al., 2005; Han et al., 2007 use the filtering operator
defined above on individual elements of the GMMs they want to combine. They
first align the neighboring GMMs during the mipmap generation by adding a reg-
ularization term in the EM log-likelihood function. This term ensures that elements
with the same index in neighboring GMMs are close to each other. With that, as for
Olano and Baker, 2010; Dupuy et al., 2013, they can rely on hardware interpolation to
perform the filtering efficiently at render time. While their method is really efficient
and compliant with anisotropic filtering, the results aren’t really accurate, drastically
roughening the result due to the use of the Filtering operator. Moreover, alignment
is never perfect, which can also worsen the results as shown on Figure A.3.

Linear Gaussian Mixture Models Blending

We therefore propose to use our new Blending operator to ensure the preservation of
the input GMMs. As we have seen earlier, the Blending operator produces a higher
order GMM by linearly combining all the elements of the input GMMs. While this
would give us a perfectly accurate representation of the input GMMs, this solution
is too expensive to be ran in a production renderer. Even using a simple trilinear
filtering function, we would have to combine 8 set of GMMs parameters, which
would drastically impact the performance of our method. For this reason, we desire
to limit the number of Gaussian elements produced by the Blending operator. One
solution is to use our GMM-EM algorithm to fit a lower order GMM to the GMM
resulting from the Blending operator. We call it the Fitting operator. While being
accurate, this strategy is expensive, given the fact that it will have to be used at
render time. However, by diminishing the number of iteration the algorithm takes,
it is possible to drastically reduce its cost, while losing in accuracy. Note also that
slight changes to the initialization method will have to be made to ensure its stability
and avoid any flickering artifact. To achieve better performances, we explored other
strategies that might produce similar results at a lower cost.

40 Chapter 4. Texture-based reflectance filtering with Gaussian Mixture Models

To find a better solution, we will go back to a simple scenario where we are
trying to blend two GMMs with the same number of elements. Figure 4.4 shows
the weights resulting from the Blending operator on two arbitrary GMMs of the
same size. We notice that weights of the elements of the first GMM (left) become
insignificant as t gets closer to 1. We could decide to safely drop those elements
as soon as their weight is smaller than a defined threshold. However, we cannot
constrain the number of elements in the resulting GMMs this way.

FIGURE 4.4: Gaussian element weights resulting from the Blending
operation on two GMMs of the same size

Max-Blending If we want to constraint our resulting GMMs to a specific number
of elements K, a solution would be to only keep the K elements with the largest
weight at any t. This solution is implemented by the Max-Blending operator and
Figure 4.5 illustrates its application on the same two GMMs.

FIGURE 4.5: Gaussian element weights resulting from the
Max-Blending operation on two GMMs with K = 3

When looking at a single weight curve on this plot, it is clear that this operator
introduces discontinuities that will result in highlight flickering in the renders. In
order to prevent the operator to produce any flickering artifacts, we need the weights
of the Gaussian elements to reach zero before being replaced by another element. A
key observation can be made on Figure 4.5: the order in which the Gaussian elements
of the first GMMs are being dropped follows the increasing weight order. Moreover,
the order in which the Gaussian elements of the second GMMs are added to the
resulting GMM corresponds to the inverse of the increasing weight order. Using
this logic, we can define a replacement mapping of Gaussian elements between the
two GMMs, as well their respective replacement point on the t-axis defined by the

4.7. Reflectance filtering with Gaussian Mixture Models 41

pair of weight {wa, wb} as:

β =
wa

wa + wb

Assuming both GMMs have K Gaussian elements sorted based on their weights,
we can give a definition of the Max-Blending operator for the sake of completeness:

Max-Blending(Θ, Θ′, t) =

 k⋃
i=1

j=k−i+1

{W(wi, w′j, t), µi, Σi}

∪
 k′⋃

i=1
j=k−i+1

{{W(w′i, wj, 1− t), µ′i, Σ′i}

with

W(wa, wb, t) =
{

(1− t) · wa if t < wa
wa+wb

0 otherwise

Smooth-Blending To solve the discontinuity issue of the Max-Blending operator,
we need to ensure that the weights of Gaussian elements reach zero before being
replaced. In other words, at the replacement point, the weights of the correspond-
ing two Gaussian elements should be equal to zero. This can easily be achieved
by changing the slopes of the weights in the Max-Blending operator as done in the
Smooth-Blending operator.

Smooth-Blending(Θ, Θ′, t) =

 k⋃
i=1

j=k−i+1

{W(wi, w′j, t), µi, Σi}

∪
 k′⋃

i=1
j=k−i+1

{{W(w′i, wj, 1− t), µ′i, Σ′i}

with

W(wa, wb, t) =

{
(1− t(wa+wb)

wa
) · wa if t < wa

wa+wb

0 otherwise

Figure 4.6 shows the weight curves resulting from the Smooth-Blending operator
on the two sorted GMMs.

FIGURE 4.6: Gaussian element weights resulting from the
Smooth-Blending operation on two GMMs

As our Gaussian Mixture Models represent distribution function, it is implied
that the weights of the Gaussian elements in our GMMs sum to one. Unfortunately,
this normalization constraint has a big impact on the curve of the weights for our
Gaussian elements. As illustrated on Figure 4.7, the curve of the weights do not

42 Chapter 4. Texture-based reflectance filtering with Gaussian Mixture Models

behave as expected once the normalization applied. Although, the discontinuities
in the derivatives of the weights introduces by the normalization do not cause any
flickering artifacts in practice.

FIGURE 4.7: Impact of the normalization of the weight for the
Smooth-Blending operator

Bilinear Gaussian Mixture Model Blending

We now have an operator for smoothly blending between two GMMs. However,
in order to be able to use this operator as a filtering method, we need to be able to
blend more than two GMMs. To begin with, we are indeed interested in a bilinear
extension of the former Blending operator. This operator would blend between four
GMMs (GMMA, GMMB, GMMC, GMMD) along two axes s and t. This operator
returns the original GMMs at the unit square corners such that:

(s, t) = (0, 0)⇒ GMMA
(s, t) = (0, 1)⇒ GMMB
(s, t) = (1, 0)⇒ GMMC
(s, t) = (1, 1)⇒ GMMD

(4.1)

One way to achieve this is to first blend the pairs of GMMs (GMMA, GMMB)
and (GMMC, GMMD) with the Smooth-Blending operator and then blend their re-
sults with the same operator to produce the final blended GMM. Unfortunately,
this produces unsmooth result due to discontinuities in the pairing of the Gaussian
elements during the third Smooth-Blending operation.

For this reason, we will define a new Bilinear-Blending (smooth) operator
which will consider the four GMMs all together to produce smooth results. Similarly
to the previous blending operators, it will match individual Gaussian elements of the
four GMMs and perform the blending on those quadruplets of Gaussian elements
independently. As GMMA transitions to GMMB along the s axis and to GMMC
along the t axis, following the same logic as in the previous operators, Gaussian el-
ements of GMMA with high weights should be matched with Gaussian elements of
GMMB and GMMC that have small weights. The same applies to Gaussian elements

4.7. Reflectance filtering with Gaussian Mixture Models 43

of GMMD with larger weights. Therefore, one can say that the blending is perform
in ascending weight order on the elements of GMMA and GMMD and in decreasing
weights order for GMMB and GMMC.

As for the Smooth-Blending operator, we want the weight of the Gaussian ele-
ments to reach zero before being replaced by another Gaussian elements. While we
were working with curves to describe the weights in the 1D operator, extending the
blending operator to the 2D world implies the use of planes instead. In the same
way every pair of Gaussian elements defined a replacement point along the t axis in
the Smooth-Blending, Bilinear-Blending defines 5 replacement points per quadru-
plet of Gaussian elements, handling all the possible replacement cases between the
four GMMs. The weights of the Gaussian elements are constrained to be zero at
those replacement points, which combined with Eq 4.1 results in a set of constraints
on the weights of the four GMMs on the unit square shown in Table 4.2. The location
of the replacement points, as illustrated on Figure 4.8, are defined as follow:

a = wA
wA+wB

b = wB
wB+wC

c = wC
wC+wD

d = wA
wA+wC

f = 1− wC+wD
wA+wB+wC+wD

j = 1− wB+wD
wA+wB+wC+wD

(4.2)

s t wA wB wC wD

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1
0 a 0 0 0 0
d 0 0 0 0 0
f j 0 0 0 0
b 1 0 0 0 0
1 c 0 0 0 0

TABLE 4.2: Constraints table for the weights of the quadruplet of
Gaussian elements for the Bilinear-Blending operator

Given those 9 constraints, we can derive the equations of 8 planes that can be
used to compute the weights of the quadruplet of Gaussian elements. Figure 4.8
shows how those 8 planes are arranged on the unit square and Eq. 4.3 defines the
planes equations. Figure 4.9 illustrates those same planes in a 3D plot where the
third dimension represents the amplitude of the weights and the colors indicate the
different Gaussian element active at a specific location along the two axis.

44 Chapter 4. Texture-based reflectance filtering with Gaussian Mixture Models

FIGURE 4.8: Configuration of 8 planes in the Bilinear-Blending op-
erator

p0 = x(j−a)
a f − y

a + 1

p1 = x(a−j)
f−a f + y

1−a +
a

a−1

p2 = y(b− f)
b−bj + f−bj

b−bj −
x
b

p3 = y(f−b)
(b−1)(j−1) +

bj− f
(b−1)(j−1) +

x
1−b

p4 = x(j−c)
(c−1)(f−1) +

c f−j
(c−1)(f−1) +

y
1−c

p5 = x(c−j)
c−c f + c f−j

c(f−1) −
y
c

p6 = y(d− f)
j−dj + x

1−d +
d

d−1

p7 = y(f−d)
d f − x

d + 1

(4.3)

By varying the weight of the original Gaussian elements, the location of the re-
placement points move and therefore the planes equations changes as well. Figure
4.10 illustrates the 8 planes with a different configuration for the original weights.
Since each plane’s projection on the unit square forms a triangle, we can use trian-
gle intersection to define the plane corresponding to a given location along the two
axis. The Bilinear-Blending operator then evaluates the value of this plane and
attributes it to the corresponding Gaussian elements, while setting a zero weight to
all the other Gaussian elements of the quadruplet.

4.7. Reflectance filtering with Gaussian Mixture Models 45

FIGURE 4.9: 3D representation of the 8 planes

Comparison of the different blending strategies

We included figures comparing the different blending strategies introduced in this
section in Appendix 5. On those figures, the 4 original GMMs (located at the 4
corners of each grid) represent the NDFs of different fiber orientations of the carbon
fiber texture shown on Figure 4.11. Figure A.1 is the result of the Blending operator,
which is our reference solution to the filtering problem, quadrupling the size of the
output GMM and conserving every single Gaussian element. As expected, the NDF
at the center of this grid, which represent the sum of the 4 original distributions
(normalized), is a cross shaped NDF. This will result in the well known cross-like
shaped highlight of carbon fiber materials.

As illustrated in Figure A.2 and Figure A.3, the lack of possible alignment of the
different Gaussian elements in the 4 original GMMs results in poor quality of the fil-
tering. Not only the NDF at the center of the grid do not reproduce the cross shape,
but every single NDFs on this grid is completely loosing the structures contained in
reference results. In practice this would result is render far from the ground truth
results and really rough surfaces. Those figures illustrate a failure case for Tan’s
and Han’s method. On the other hand, as shown on Figure A.4 and Figure A.5,
the Max-Blending operator and the Smooth-Blending operator totally preserve the
structure of the original GMM and produce a cross shaped NDF close to the ground
truth solution. As discussed in this section above, Max-Blending introduces flicker-
ing artifacts due to discontinuities in the curve of the Gaussian element’s weights,
therefore the Smooth-Blending operator is the better solution. Finally, the Fitting
operator gives the best results compared to ground truth as shown in Figure A.6.
Note that those result are using a single iteration of the GMM-EM algorithm after
a K-mean++ initialization step to minimize the cost of the operator. Better results
could be achieved at a higher cost by running multiple iterations of the GMM-EM
algorithm.

46 Chapter 4. Texture-based reflectance filtering with Gaussian Mixture Models

FIGURE 4.10: 8 planes with a different configuration for the original
weights

Blending with other filtering methods

As discussed in Chapter 1, there exist many other filtering methods, often more com-
plex than the simple bilinear filtering. Those methods tries to better place samples
(and often use more that 4 samples) in the texture space in a way that better fits
a given filter region. For instance, for really anisotropic filter region, which often
occurs at grazing angle, bilinear filtering will only account for the main axis of the
filter region, resulting in blurring of the texture content along the other axis. For
our method to be used in a production renderer, it is important to discuss the way
blending strategies can work with more sophisticated filtering method.

Trilinear filtering extends bilinear filtering to another dimension, ensuring a smooth
transition between different levels of the mipmap. Even for this simple case, it is
tricky to extend the Bilinear-Blending operator to a higher dimensionality since
now constraints in Table 4.2 would become functions of the third axis. However, we
realized that in practice, applying the Bilinear-Blending operator on both mipmap
level individually and then using the Smooth-Blending operator to blend the result
of the bilinear blending produces good and stable results. Unfortunately, it seems
to be impossible to extend the Bilinear-Blending operator to anisotropic filtering
methods. This comes from the fact that this operator relies on the matching of the
Gaussian elements in the 4 GMMs, which doesn’t exists with an arbitrary number
of GMMs. While we could take a sequence of bilinear samples at a finer level of
the mipmap, and then merge those results again using our blending operators, such
solution will probably eventually break due to a lack of robustness and stability.

On the other hand, the Fitting operator can be applied on GMMs of any sizes,
meaning that we can combine as many texture samples (GMMs) as we like before
proceeding to the blending of the GMMs. Also, the Fitting operator is stable and

4.8. Implementation in a production renderer 47

FIGURE 4.11: Carbon fiber normal map texture and the 4 NDFs cor-
responding to each one of the four fiber orientation

robust, unlike the Max-Blending operator. While this operator comes at a higher
cost, well written optimized code leveraging vectorization capabilities of modern
CPUs and the use of approximation in the GMM-EM could bring down to the cost
of this operator to acceptable. Also, on top of the benefits of being compatible with
any modern filtering method, this operator produces higher quality results than any
other operator (besides Blending). For this reason, we considered both the Fitting
operator and the Smooth-Blending operator in our implementation in Manuka and
ran series of tests to get a better understand of both operator’s capability.

4.8 Implementation in a production renderer

In order to implement this method in Manuka, a lot of changes had to be made on
various components of the renderer and Weta’s pipeline:

• Mipmap generation tool: We implemented a C++ GMM mipmap generation
tool that uses the fitting and simplification schemes introduced above to com-
pute the parameters of the GMM mipmap for a given LEAN map. The fitting
procedure can be highly parallelized across the texels of a single mipmap level,
greatly speeding up the mipmap generation. Each Gaussian element is com-
posed of 6 parameters (weight, x and y coordinates of the center and 3 elements
of the diagonal covariance matrix). With K the user-defined maximum number
of Gaussian elements in the GMMs, each texel can contain up to 6× K floating
points numbers. Those values are stored in different individual channels of
in an EXR file, relying on the built-in compression algorithm of the OpenEXR
framework to reduced unused regions of certain channels.

• Texture engine custom sampler: Manuka’s texture engine is highly modular,
implementing different sampling and filtering strategies to best fit production
needs. We extended the texture engine with a custom sampler that implements
both the Bilinear-Blending operator and the Fitting operator and can prop-
erly read the multi-channels mipmap of GMM parameters. Code efficiency of
this sampler is a crucial part of our method since this will be running at render
time during the pre-shading phase. We also expose various parameters on the
texture engine’s interface such that the shader code has the ability to vary the
number of Gaussian elements in the resulting GMMs, the number of iteration

48 Chapter 4. Texture-based reflectance filtering with Gaussian Mixture Models

for the Fitting operator, or other values like the simplification threshold or
the convergence criterion of the GMM-EM algorithm.

• Shader code: Custom shader code had to be written as well to ensure the
proper use of the new texture engine’s interface and make sure to correctly
handle the shading data (GMM parameters) to the renderer.

• Parameter storage on the grid: In the pre-shading phase, the material param-
eters computed during the shader evaluation have to be stored on the grid.
Some code modifications had to be done here to handle the many parameters
of the GMMs and properly compress those for optimal performance.

• Stochastic sampling of the GMMs: During the light transport phase, the
GMM parameters of 4 vertices around the hitting point are recovered from
the grid. To avoid the burden of re-implementing every single BSDF model
to support mixture of Gaussians as NDF, we decided to stochastically sample
one of the Gaussian elements of those 4 GMMs and use it as a single LEAN
lobe. Since many samples per pixels are taken during the light transport phase,
this strategies will eventually sample all the different Gaussian elements and
therefore converge to the right solution. Notice that this will introduce extra
Monte-Carlo noise slowing down the convergence of the render. This noise can
be reduce by using important sampling (Veach, 1998) based on the weights of
the different Gaussian elements in the sampling procedure.

Unfortunately, after implementing both the Bilinear-Blending operator and the
Fitting operator, we realized that the Bilinear-Blending operator is not compat-
ible with the pre-shading architecture of Manuka. This operator relies on the sub-
sequent sampling of many points on the unit square (Figure 4.8) to properly ac-
count for all the components of the underlying NDF, while Manuka only does a
single texture look-up per vertices during the pre-shading phase. Therefore, it will
always under-sample the NDF content which results in aliasing and flickering ar-
tifacts, where different mixture of Gaussian elements are present on the grid when
the tessellation changes (for instance if we slide the tessellation grid along one axis).
This would not be the case in a shade-on-hit renderer. For this reason, our only op-
tion is to use the Fitting operation in the texture engine to compute the final GMM
parameters that will be stored on the grid.

4.9 Results and comparisons

In this section we will compare the results of our reflectance filtering method using
Gaussian Mixture Models with the Fitting operator against the current LEAN im-
plementation in Manuka. Unfortunately, due to the lack of flexibility and aliasing
artifacts, we couldn’t properly implement the Bilinear-Blending operator in our
production environment. Moreover, the fact that it could only work in a "bilinear-
fashion" drastically complicated its implementation in Manuka’s texture engine. For
those reasons, we won’t show any renders using that operator in this section. How-
ever, given the accuracy of the resulting NDFs as shown in Figure A.5, we believe
that it would be a considerable improvement on LEAN in another renderer.

In order to compare our method with LEAN, we produced a range of renders
of the same scene at different resolutions. The filter region is driven by the pixel
footprint in world space therefore rendering at different resolutions will trigger the

4.9. Results and comparisons 49

texture engine to access different levels of the mipmap. For instance, a high resolu-
tion render implies a fine filter region so the texture engine will gather samples from
a lower (finer) mipmap level. For the renders using our method, we used a single
generated mipmap with a maximum of 8 Gaussian elements per texel. However,
we vary the maximum number of Gaussian elements in the mixtures produced by
the Fitting operator in the texture engine. We also vary the number of iterations
that operator performs to get a sens of the possible tradeoff between accuracy and
performance. Every figure in Appendix A contains a grid of renders at a specific
resolution. Each grid is composed of six renders using different parameters for our
method. Also, for every render, we used a compositing tool (Nuke) to rescale the
render to a fix resolution in order to facilitate the comparisons between the differ-
ent figures. Below the rescaled renders are the renders at their respective resolution,
which give an idea of the appearance of the reflectance filtering result in practice
(zooming in and out). Also, we composed the reference result on the right half of
every render in the grid to assess the quality of the reflectance filtering. This ref-
erence result is computed at a very high resolution and down-scaled to match the
resolution of the renders in the grid.

At the time of writing this thesis, the implementation of our method in Manuka
is still far from optimal and hacky, therefore, given the complexity of the produc-
tion renderer, the recorded timings of the Fitting operation and the extra memory
allocated on the grid by our method are pretty unreliable and irrelevant. For this
reason, we are not including any performance benchmark in this write-up. How-
ever, note that it is expected that LEAN will always be cheaper than our solution,
and the more Gaussian elements in our GMMs or the more iterations the Fitting
operator performs, the more expensive our method will be.

Most of the tests we ran with our method were using high quality production
textures and we spent a lot of time ensuring the correctness and convergence of our
method on those textures. Unfortunately, we were not allowed to use those renders
in this thesis so we had to run another round of tests on another texture (lower
quality). The texture used for those comparisons is the same carbon fiber normal
map used to demonstrate the capability of the different blending operators (Figure
4.11). In the test scene, the camera faces a plane on which the texture is projected.
The scene is illuminated by a point light source at the camera’s position.

On Figure B.1 and Figure B.2, the texture engine accesses the first levels of the
mipmap, where the reflectance filtering still approximates fairly well the true under-
lying NDF. Indeed, the results are really similar across the grids and the reference
parts are almost indistinguishable. On Figure B.3 and Figure B.4, the LEAN method
quickly starts to roughen the surface, while our method better conserves the cross-
like highlight. Interestingly, the renders where the Fitting operator is constrained
to produce GMMs with a maximum of 2 Gaussian elements are almost as good as
the ones with a maximum of 8 Gaussian elements. This proved to be a real benefit
in practice since it drastically reduces the memory cost on the grid, as well as the
noise introduced by the stochastic sampling procedure in the light transport phase.
Finally, Figure B.6 illustrates the failure cases of the LEAN method where the high-
light becomes a single Gaussian shape. On the other hand, our method tends to
preserve the cross-shaped highlight when using multiple Gaussian elements, even
when accessing higher (coarser) levels in the mipmap. As expected, the result from
our method using a single Gaussian element are similar to the ones produces with
the LEAN method. Also, those tests show the importance of taking more than one
iteration of the GMM-EM algorithm in the Fitting operator. Indeed, the quality
of the results completely depends on this, especially when working with a larger

50 Chapter 4. Texture-based reflectance filtering with Gaussian Mixture Models

number of Gaussian elements in the final GMMs.

4.10 Future work

While having explored new fitting methods, GMM simplification schemes and dif-
ferent blending strategies, there is a lot of work left to be done regarding reflectance
filtering using Gaussian Mixture Models. Here is a short list of key ideas that would
be worth investigating in the future:

• Other statistical models: we believe that by using more complex parametric
distribution models in a similar framework, we could reduce the amount of
parameters stored in the mipmap texture as well as on the grid in Manuka. 2-
dimensional Skewed normal distributions only use two extra parameters but
are much more expressive than regular Gaussian distributions. Therefore, we
could reduce the number of elements in the mixture while keeping the same
accuracy in the representation.

• GMM NDF in current BSDF models: as a replacement to the stochastic sam-
pling of the Gaussian elements at the light transport phase, we could extend
our BSDF models such that they work with more than a single Gaussian dis-
tribution as NDF.

• Optimal Transport Expectation Maximization algorithm: it would be inter-
esting to derive a fitting algorithm based on the Earth-Moving distance met-
ric introduce in this chapter. It would aim at minimizing the Earth-Moving
distance rather than maximizing the log-lokelyhood during the parameters
search. This could result in higher quality of the fitting from a reflectance per-
ceptive standpoint.

• Fitting discrete flakes parameters: limited by its maximum number of Gaus-
sian elements, the GMMs used in our framework still cannot properly repre-
sent the distribution of high-frequency detail normal map textures. It would
be great to extend our fitting algorithm to approximate the density of those
microstructures and feed those parameters to a discrete model like the one in-
troduced in Chapter 3.

51

Chapter 5

Conclusion

In this thesis, we have presented three different methods aiming at solving differ-
ent parts of the reflectance filtering problem. The first approach is brand new in
the field since autoencoders have never been used before (to this day) to produce a
compressed representation of the displacement information that is compatible with
texture filtering methods. While it is still far from producing the level of quality
needed to be usable in practice, we believe that this solution has a lot of poten-
tial and might inspire future research projects in computer graphics. The second
method we introduced is a practical implementation of a discrete microfacet model
in Manuka. The challenge for this method was to solve technical and engineer-
ing problems given the complexity and the architecture of the production renderer.
Since this model was lacking in expressiveness, we investigated a third method that
extends LEAN/LEADR using Gaussian Mixture Models. We developed an new op-
timization algorithm for fitting GMMs on larger GMMs and also suggested a novel
simplification scheme for GMM based on the Earth-Moving distance. Those two
algorithms combined allowed us to write a tool to efficiently generate mipmaps of
Gaussian mixtures as a replacement to the LEAN maps. We then looked at different
ways of combining sets of GMMs that could be used in conjunction with modern
texture filtering methods. We put a lot of effort on a type of blending operator that
proved to be incompatible with the architecture of our renderer. However, we be-
lieve that it could be used as a efficient solution when GMMs need to be bilinearly
combined. Finally, we illustrated some results using our prototype implementation
of this method in Manuka. While still a lot of improvements can be done on this
method, we hope that one day in the near future it will replace the LEAN mapping
method in Manuka and in other production renderers.

Until then, just keep rendering!

53

Appendix A

Bilinear blending strategies figures

FIGURE A.1: Blending operator (ground truth)

54 Appendix A. Bilinear blending strategies figures

FIGURE A.2: Interpolation operator with aligned GMMs

Appendix A. Bilinear blending strategies figures 55

FIGURE A.3: Filtering operator with aligned GMMs

56 Appendix A. Bilinear blending strategies figures

FIGURE A.4: Max-Blending operator

Appendix A. Bilinear blending strategies figures 57

FIGURE A.5: Smooth-Blending operator

58 Appendix A. Bilinear blending strategies figures

FIGURE A.6: Fitting operator

59

Appendix B

Results of the GMM reflectance
filtering method

FIGURE B.1: Accessing mipmap level: 0

60 Appendix B. Results of the GMM reflectance filtering method

FIGURE B.2: Accessing mipmap levels: 0 & 1

Appendix B. Results of the GMM reflectance filtering method 61

FIGURE B.3: Accessing mipmap levels: 1 & 2

62 Appendix B. Results of the GMM reflectance filtering method

FIGURE B.4: Accessing mipmap levels: 2 & 3

Appendix B. Results of the GMM reflectance filtering method 63

FIGURE B.5: Accessing mipmap levels: 3 & 4

64 Appendix B. Results of the GMM reflectance filtering method

FIGURE B.6: Accessing mipmap levels: 4 & 5

65

Bibliography

ACM (2018). In: ACM Trans. Graph. 37.3. ISSN: 0730-0301.
Arthur, David and Sergei Vassilvitskii (2007). “K-means++: The Advantages of Care-

ful Seeding”. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA ’07. New Orleans, Louisiana: Society for Industrial
and Applied Mathematics, pp. 1027–1035. ISBN: 978-0-898716-24-5. URL: http:
//dl.acm.org/citation.cfm?id=1283383.1283494.

Atanasov, Asen and Vladimir Koylazov (2016). “A Practical Stochastic Algorithm for
Rendering Mirror-like Flakes”. In: ACM SIGGRAPH 2016 Talks. SIGGRAPH ’16.
Anaheim, California: ACM, 67:1–67:2. ISBN: 978-1-4503-4282-7. DOI: 10.1145/
2897839.2927391. URL: http://doi.acm.org/10.1145/2897839.2927391.

Ballard, Dana H. (1987). “"Modular learning in neural networks"”. In:
Blömer, Johannes and Kathrin Bujna (2013). “Simple Methods for Initializing the EM

Algorithm for Gaussian Mixture Models”. In:
Christophe Hery Michael Kass, Junyi Ling (2014). Geometry into Shading.
Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). “Maximum Likelihood from

Incomplete Data via the EM Algorithm”. In: Journal of the Royal Statistical Society.
Series B (Methodological) 39.1, pp. 1–38. ISSN: 00359246. URL: http://www.jstor.
org/stable/2984875.

Dong, Zhao et al. (2015). “Predicting Appearance from Measured Microgeometry
of Metal Surfaces”. In: ACM Trans. Graph. 35.1, 9:1–9:13. ISSN: 0730-0301. DOI:
10.1145/2815618. URL: http://doi.acm.org/10.1145/2815618.

Dupuy, Jonathan et al. (2013). “Linear Efficient Antialiased Displacement and Re-
flectance Mapping”. In: ACM Transactions on Graphics. Proceedings of Siggraph
Asia 2013 32.6, Article No. 211. DOI: 10.1145/2508363.2508422. URL: https:
//hal.inria.fr/hal-00858220.

Fascione, Luca et al. (2018). “Manuka: A batch-shading architecture for spectral path
tracing in movie production.” In:

Garcia, Vincent, Frank Nielsen, and Richard Nock (2010). Hierarchical Gaussian Mix-
ture Model.

Han, Charles et al. (2007). “Frequency Domain Normal Map Filtering”. In: ACM
Trans. Graph. 26.3. ISSN: 0730-0301. DOI: 10.1145/1276377.1276412. URL: http:
//doi.acm.org/10.1145/1276377.1276412.

Heitz, Eric (2014). “Understanding the Masking-Shadowing Function in Microfacet-
Based BRDFs”. In: Journal of Computer Graphics Techniques (JCGT) 3.2, pp. 48–107.
ISSN: 2331-7418. URL: http://jcgt.org/published/0003/02/03/.

Jakob, Wenzel et al. (2014). “Discrete Stochastic Microfacet Models”. In: ACM Trans.
Graph. 33.4, 115:1–115:10. ISSN: 0730-0301. DOI: 10.1145/2601097.2601186. URL:
http://doi.acm.org/10.1145/2601097.2601186.

Jolliffe, I.T. (1986). Principal Component Analysis. Springer Verlag.
Katzin, M. (1964). “The scattering of electromagnetic waves from rough surfaces”.

In: Proceedings of the IEEE 52.11, pp. 1389–1390. ISSN: 0018-9219. DOI: 10.1109/
PROC.1964.3413.

http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dx.doi.org/10.1145/2897839.2927391
http://dx.doi.org/10.1145/2897839.2927391
http://doi.acm.org/10.1145/2897839.2927391
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
http://dx.doi.org/10.1145/2815618
http://doi.acm.org/10.1145/2815618
http://dx.doi.org/10.1145/2508363.2508422
https://hal.inria.fr/hal-00858220
https://hal.inria.fr/hal-00858220
http://dx.doi.org/10.1145/1276377.1276412
http://doi.acm.org/10.1145/1276377.1276412
http://doi.acm.org/10.1145/1276377.1276412
http://jcgt.org/published/0003/02/03/
http://dx.doi.org/10.1145/2601097.2601186
http://doi.acm.org/10.1145/2601097.2601186
http://dx.doi.org/10.1109/PROC.1964.3413
http://dx.doi.org/10.1109/PROC.1964.3413

66 BIBLIOGRAPHY

Kiefer, Joe and J Wolfowitz (1952). “Stochastic Estimation of the Maximum of A Re-
gression Function”. In: 23.

Knight, P. (2008). “The Sinkhorn–Knopp Algorithm: Convergence and Applications”.
In: SIAM Journal on Matrix Analysis and Applications 30.1, pp. 261–275. DOI: 10.
1137/060659624.

Olano, Marc and Dan Baker (2010). “LEAN Mapping”. In: Proceedings of the 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D ’10. Wash-
ington, D.C.: ACM, pp. 181–188. ISBN: 978-1-60558-939-8. DOI: 10.1145/1730804.
1730834. URL: http://doi.acm.org/10.1145/1730804.1730834.

Pharr, Matt, Wenzel Jakob, and Greg Humphreys (2016). Physically Based Render-
ing: From Theory to Implementation (3rd ed.) 3rd. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., p. 1266. ISBN: 9780128006450.

Raymond, Boris, Gael Guennebaud, and Pascal Barla (2016). “Multi-Scale Rendering
of Scratched Materials using a Structured SV-BRDF Model”. In: ACM Transactions
on Graphics. DOI: 10.1145/2897824.2925945. URL: https://hal.inria.fr/hal-
01321289.

Tan, Ping et al. (2005). “Multiresolution Reflectance Filtering”. In: Proceedings of the
Sixteenth Eurographics Conference on Rendering Techniques. EGSR ’05. Konstanz,
Germany: Eurographics Association, pp. 111–116. ISBN: 3-905673-23-1. DOI: 10.
2312/EGWR/EGSR05/111-116. URL: http://dx.doi.org/10.2312/EGWR/EGSR05/
111-116.

Torrance, K. E. and E. M. Sparrow (1967). “Theory for Off-Specular Reflection From
Roughened Surfaces∗”. In: J. Opt. Soc. Am. 57.9, pp. 1105–1114. URL: http://www.
osapublishing.org/abstract.cfm?URI=josa-57-9-1105.

Veach, Eric (1998). “Robust Monte Carlo Methods for Light Transport Simulation”.
AAI9837162. PhD thesis. Stanford, CA, USA. ISBN: 0-591-90780-1.

Verbeek, Jakob, Jan R. J. Nunnink, and Nikos Vlassis (2006). “Accelerated EM-based
clustering of large data sets”. In: 13, pp. 291–307.

Walter, Bruce et al. (2007). “Microfacet Models for Refraction Through Rough Sur-
faces”. In: Proceedings of the 18th Eurographics Conference on Rendering Techniques.
EGSR’07. Grenoble, France: Eurographics Association, pp. 195–206. ISBN: 978-3-
905673-52-4. DOI: 10.2312/EGWR/EGSR07/195-206. URL: http://dx.doi.org/
10.2312/EGWR/EGSR07/195-206.

Werner, Sebastian et al. (2017). “Scratch Iridescence: Wave-optical Rendering of Diffrac-
tive Surface Structure”. In: ACM Trans. Graph. 36.6, 207:1–207:14. ISSN: 0730-0301.
DOI: 10.1145/3130800.3130840. URL: http://doi.acm.org/10.1145/3130800.
3130840.

Williams, Lance (1983). “Pyramidal Parametrics”. In: SIGGRAPH Comput. Graph.
17.3, pp. 1–11. ISSN: 0097-8930. DOI: 10.1145/964967.801126. URL: http://
doi.acm.org/10.1145/964967.801126.

Yan, Ling-Qi et al. (2014). “Rendering Glints on High-Resolution Normal-Mapped
Specular Surfaces”. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH
2014) 33.4.

Yan, Ling-Qi et al. (2016). “Position-Normal Distributions for Efficient Rendering of
Specular Microstructure”. In: ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2016) 35.4.

Yan, Ling-Qi et al. (2018). “Rendering Specular Microgeometry with Wave Optics”.
In: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2018) 37.4.

Yongxin Chen Tryphon T. Georgiou, Allen Tannenbaum (2018). “Optimal transport
for Gaussian mixture models”. In:

http://dx.doi.org/10.1137/060659624
http://dx.doi.org/10.1137/060659624
http://dx.doi.org/10.1145/1730804.1730834
http://dx.doi.org/10.1145/1730804.1730834
http://doi.acm.org/10.1145/1730804.1730834
http://dx.doi.org/10.1145/2897824.2925945
https://hal.inria.fr/hal-01321289
https://hal.inria.fr/hal-01321289
http://dx.doi.org/10.2312/EGWR/EGSR05/111-116
http://dx.doi.org/10.2312/EGWR/EGSR05/111-116
http://dx.doi.org/10.2312/EGWR/EGSR05/111-116
http://dx.doi.org/10.2312/EGWR/EGSR05/111-116
http://www.osapublishing.org/abstract.cfm?URI=josa-57-9-1105
http://www.osapublishing.org/abstract.cfm?URI=josa-57-9-1105
http://dx.doi.org/10.2312/EGWR/EGSR07/195-206
http://dx.doi.org/10.2312/EGWR/EGSR07/195-206
http://dx.doi.org/10.2312/EGWR/EGSR07/195-206
http://dx.doi.org/10.1145/3130800.3130840
http://doi.acm.org/10.1145/3130800.3130840
http://doi.acm.org/10.1145/3130800.3130840
http://dx.doi.org/10.1145/964967.801126
http://doi.acm.org/10.1145/964967.801126
http://doi.acm.org/10.1145/964967.801126

	Abstract
	Introduction to appearance modeling and texture filtering
	Appearance modeling
	Texture filtering
	Previous work
	Solutions for a production renderer

	Autoencoder for Reflectance Filtering
	Overview
	Training set
	Normal map classification
	NDF histogram representation
	Data engineering

	Network architecture
	Autoencoders
	Loss function
	MSE and Chi-square
	Wasserstein distance

	Training procedure and architecture
	Encoder architecture
	Decoder architecture
	Texture filtering in latent space

	Results

	Procedural Microflakes Models
	Introduction to multiscale BRDF
	Implementation
	Stochastic hierarchy
	Evaluation and sampling procedure
	Flakes control

	Results

	Texture-based reflectance filtering with Gaussian Mixture Models
	Method overview
	Gaussian Mixture Models
	Expectation-Maximization algorithm
	EM algorithm for Gaussian Mixture Models (GMM-EM)
	Computing a mipmap of Gaussian Mixture Models
	Slope domain parameterization

	GMM simplification
	Gaussian Mixture Model distance metrics
	Kullback-Liebler divergence
	Optimal transport for Gaussian Mixture Models

	Simplification scheme

	Reflectance filtering with Gaussian Mixture Models
	Filtering and interpolation of Gaussian elements
	Reflectance filtering operators on GMMs
	Bilinear Gaussian Mixture Model Blending
	Comparison of the different blending strategies
	Blending with other filtering methods

	Implementation in a production renderer
	Results and comparisons
	Future work

	Conclusion
	Bilinear blending strategies figures
	Results of the GMM reflectance filtering method
	Bibliography

